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Combinatorial Optimization by Gene Expression
Programming: Inversion Revisited

Combinatorial optimization problems require combinatorial-specific search operators so that populations
of candidate solutions can evolve efficiently. Indeed, several researchers created modifications to the basic
genetic operators of mutation and recombination in order to create high performing combinatorial-specific
operators. However, it is not known which operators perform better as no systematic comparisons have
been done. In this work, a new algorithm that explores a new chromosomal organization based on multigene
families is used. This new organization together with several combinatorial-specific search operators,
namely, inversion, gene and sequence deletion/insertion, and restricted and generalized permutation, al-
low the algorithm to perform with high efficiency. The performance of the new algorithm is empirically
compared on the 13- and 19-cities tour traveling salesperson problem, showing that the long abandoned
inversion operator is by far the most efficient of the combinatorial operators. The efficiency and potentiali-
ties of the new algorithm are further demonstrated by solving a simple task assignment problem.

1. Introduction

Gene expression programming (GEP) is a multigenic geno-
type/phenotype system encoding expression trees linked by a
particular linking interaction (Ferreira 2001). In its simplest
representation (head length h = 0 and maximum arity n = 0),
GEP is equivalent to the canonical genetic algorithm (GA), in
which each gene consists of only one terminal. Such simple
chromosomal organization was used to solve the 11-multi-
plexer problem, where the one-element expression trees en-
coded in each gene were posttranslationally linked by the
Boolean function if (x,y,z) (Ferreira 2001). To solve combi-
natorial problems, however, another kind of linking interac-
tion is required. For instance, in the traveling salesperson
problem (TSP) the linking consists obviously of the distance
between the cities represented by two adjacent genes.

The TSP represents a classic optimization problem and
good, traditional approximation algorithms have been de-
veloped to tackle it down (see, e.g., Papadimitriou and
Steiglitz 1982 for a review). However, to evolutionary
computists, the TSP serves as the simplest case of a variety
of combinatorial problems which are of enormous relevance
to industrial scheduling problems (Bonachea et al. 2000; Hsu
and Hsu 2001; Johnson and McGeoch 1997; Katayama and
Narihisa 1999; Merz and Freisleben 1997; Reinelt 1994).
Indeed, several evolution inspired algorithms used the TSP
as a battleground to develop combinatorial-specific search
operators such as: alternating edge crossover (Grefenstette

et al. 1985), subtour chunks crossover (Grefenstette et al.
1985), heuristic crossover for adjacency representation
(Grefenstette et al. 1985; Jog et al. 1989; Lin 1965; Suh and
van Gucht 1987), partially-mapped crossover (Goldberg and
Lingle 1985), cycle crossover (Oliver et al. 1987), order
crossover (Davis 1985; Oliver et al. 1987), order and posi-
tion based crossover (Syswerda 1991), heuristic crossover
for path representation (Grefenstette 1987; Liepins et al.
1987), genetic edge recombination crossover (Whitley et
al. 1989, 1991), maximal preservative crossover
(Mühlenbein et al. 1988), voting recombination crossover
(Mühlenbein 1989), displacement mutation (Herdy 1991;
Michalewicz 1992), exchange mutation (Ambati et al. 1991;
Banzhaf 1990; Michalewicz 1992; Oliver et al. 1987;
Syswerda 1991), repeated exchange mutation (Ambati et
al. 1991; Beyer 1992), insertion mutation (Fogel 1988;
Michalewicz 1992; Syswerda 1991), simple inversion mu-
tation (Grefenstette 1987; Holland 1975), inversion muta-
tion (Fogel 1990, 1993), and scramble mutation (Ulder et
al. 1990). Note that, in some cases, operators are not named
exactly as in the original work, as this nomenclature was
recently proposed by Larrañaga et al. (1998) in an attempt
to classify the overwhelming number of combinatorial search
operators. More recently, other operators such as edge as-
sembly crossover (Nagata and Kobayashi 1997) and inver-
over operator (Tao and Michalewicz 1998) were developed.

Despite or due to the huge number of combinatorial-spe-
cific operators, little work has been done on the compara-
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tive performance of the different operators, although differ-
ent forms of crossover have been compared (Grefenstette et
al. 1985; Oliver et al. 1987; Whitley et al. 1989, 1991). In
this work, the performance of simple inversion mutation is
compared with insertion mutation and exchange mutation
on the difficult 19-cities tour TSP, with simple inversion
mutation astoundingly outperforming insertion and exchange
mutation. Furthermore, poorly performing operators such as
displacement mutation or repeated exchange mutation, could
only be compared using an easier tour of only 13 cities. Thus,
insertion and displacement mutation, two closely related
operators in terms of implementation, are compared on the
13-cities tour TSP. Exchange mutation and repeated exchange
mutation are also compared using the shorter tour. Moreo-
ver, the potentialities of inversion are further demonstrated
by solving a simple task assignment problem where a new
chromosomal organization based on multigene families is
used.

2. Multigene families and scheduling problems

As stated previously, the chromosomal organization used to
solve combinatorial problems is very simple and consists of
multigenic chromosomes composed of one-element genes,
where each gene codes for a one-element expression tree
(ET) (Ferreira 2001). Furthermore, one-element genes may
be organized in multigene families (MGFs), in which a par-
ticular class of terminals or tasks is gathered. Such chromo-
somes composed of MGFs are very useful to evolve solu-
tions to combinatorial problems, as different classes of ter-
minals/items can be included in each MGF. For instance, the
different cities in the traveling salesperson problem may be
encoded in a multigene family, where each gene codes for a
city. Consider the simple chromosome below, composed of
one MGF with nine members:

CADEBHFIG

where each element represents a city. In this case, the ex-
pression of this chromosome consists of the spatial organi-
zation of the one-element ETs, for instance, the following
tour for the traveling salesperson problem (the starting and
finishing point is in gray):

012345 012345
632451 EDFCBA

Its expression consists of the orderly interaction of the mem-
bers of each MGF with one another as shown below:
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For optimization problems with N classes of terminals,
multigenic chromosomes composed of N multigene families
are used. For instance, the chromosome below composed of
two MGFs with six members, was designed to evolve solu-
tions to the simple task assignment problem of section 4.2
(multigene families have different shades):

3. Combinatorial-specific operators:
Performance and mechanisms

Combinatorial problems can not be solved using the genetic
operators of mutation and recombination of the basic gene
expression algorithm as these operators would generate use-
less individuals containing MGFs with repeated elements
on the one hand, and missing certain elements on the other.
Indeed, in combinatorial problems, the elements of a
multigene family must all be present and cannot be repre-
sented more than once. Therefore, special search operators
must be created so that genetic variation could be introduced
without creating invalid structures.

In this section, five genetic operators are described: inver-
sion, gene and sequence deletion/insertion, and restricted and
generalized permutation. These combinatorial-specific opera-
tors allow the introduction of genetic variation without dis-
rupting both the structure and balance of multigene families.
Note that these operators have been used by other research-
ers, but I took the liberty to change their names whenever the
name previously given could cause confusion or does not re-
flect the GEP context of genes and MGFs. However, the cor-
rect references to the original names are given below.

Before proceeding with the description of their mecha-
nisms, it is useful to compare their performances (Figure 1).
The problem chosen to make this analysis is the TSP of sec-
tion 4.1 with 19 cities using population sizes P of 100 and
evolutionary times G of 200 generations. The 19 cities were
arranged in a rectangle so that the shortest tour is 20. There-
fore, the performance can be rigorously determined in terms
of success rate, which is evaluated over 100 identical runs.
As Figure 1 clearly demonstrates, the best operator is by far
inversion, followed by gene deletion/insertion, whereas re-
stricted permutation is extremely limited.

3.1. Inversion

The inversion operator, in its mechanism, corresponds basi-
cally to the inversion operator firstly described by Holland
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(1975). In the classification proposed by Larrañaga et al.
(1998) it received the more complicated designation of “sim-
ple inversion mutation”. In the MGFs context of GEP the
inversion operator works as follows: it randomly selects the
chromosome, the multigene family to be modified, the in-
version points in the MGF, and then inverts the sequence
between these points. Each chromosome can only be modi-
fied once by this operator.

Consider the chromosome below composed of two
multigene families, each containing 13 members:

01234567890120123456789012
bhfgkicmjlaedMD CLEBFGKJHIA                  (3.1)

Suppose genes 2 and 6 in MGF
2
 were chosen as inversion

points. Then the sequence between these points is reversed,
obtaining:

01234567890120123456789012
bhfgkicmjlaedMD FBELCGKJHIA                  (3.2)

Note that, with inversion, the whole multigene family can
be inverted if the first and last gene were chosen as inver-
sion points. For instance, the inversion of MGF

2
 in chromo-

some (3.1) gives:

01234567890120123456789012
bhfgkicmjlaedAIHJKGFBELCDM                   (3.3)

 Note also that this operator allows small adjustments
like, for instance, the permutation of two adjacent genes.
For instance, if genes 7 and 8 in FMG

1
 of chromosome (3.3)

were chosen as inversion points, these genes are permuted,
obtaining:

01234567890120123456789012
bhfgkic jm laedAIHJKGFBELCDM                  (3.4)

As Figure 1 emphasizes, inversion is the most powerful
of the combinatorial-specific genetic operators, causing
populations to evolve with great efficiency when used as the
only source of genetic diversification. Indeed, this operator
alone produces better results than when combined with gene
deletion/insertion or permutation.

The high performance obtained by GEP inversion is sur-
prising and deserves a careful inspection. Perhaps for his-
torical reasons, inversion was abandoned by researchers in
the early development of GAs (see, e.g., Goldberg 1989 and
Mitchell 1996). Decisive for this outcome was, most cer-
tainly, Bagley’s (1967) disappointment with inversion while
trying to conciliate inversion with homologous recombina-
tion (see Goldberg 1989 for a detailed narrative). Obviously,
inversion disrupts homology and homologous recombina-
tion ceases to work. Unfortunately, Bagley persisted with
recombination and did not try inversion alone.

Furthermore, the astounding results obtained for inver-
sion are better appreciated if we compare them with attempts

Figure 1.  Comparison of inversion (Inver), gene deletion/insertion (Del/Ins), and restricted permutation (Permut)
on the traveling salesperson problem with 19 cities. For this analysis P = 100 and G = 200. The success rate
was evaluated over 100 identical runs.
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to solve the 19-cities tour TSP by GAs (Haupt and Haupt
1998). These researchers could not find the shortest route
using population sizes of 800 for 200 generations. As shown
in Figure 1, GEP not only finds the shortest route using inver-
sion but also using gene deletion/insertion or restricted per-
mutation using population sizes eight times smaller than the
ones used by the GA. Moreover, if inversion alone is doing
the search, GEP finds the shortest route in 96% of the runs.

3.2. Gene deletion/insertion

The gene deletion/insertion operator is the second in impor-
tance of the analyzed combinatorial-specific operators (see
Figure 1 above). This operator corresponds to the “insertion
mutation” operator in the classification proposed by
Larrañaga et al. (1998). Here, the designation “gene dele-
tion/insertion” was chosen for three reasons: 1) to reflect the
fact that the inserted element is previously deleted; 2) to
emphasize that only one gene is deleted/inserted at a time;
and 3) to distinguish this operator from the closely related
operator “sequence deletion/insertion” described below (sec-
tion 3.4).

The gene deletion/insertion operator randomly selects the
chromosome, the multigene family to be modified, the gene
to transpose, and the insertion site. Each chromosome can
only be modified once by this operator.

Consider the chromosome below composed of two
multigene families, each with 13 members:

01234567890120123456789012
ifg habdecjklmKLHCIGDFEJMBA                   (3.5)

Suppose gene 3 in MGF
1
 was selected to transpose to site

7 (between genes 6 and 7). Then gene 3 is deleted in the
place of origin and inserted between genes “d” and “e”,
obtaining:

01234567890120123456789012
ifgabd hecjklmKLHCIGDFEJMBA                   (3.6)

The deletion/insertion of genes when combined with more
powerful operators such as inversion, might be useful to make
finer adjustments. However, for all the problems analyzed
in this work, the performance was higher if inversion worked
alone.

3.3. Restricted permutation

The restricted permutation operator appears as the “exchange
mutation” operator in Larrañaga et al. (1998). It allows two
genes occupying any positions within a particular multigene
family to trade places. This operator might also be useful to
make finer adjustments when combined with inversion, but
it performs poorly if used as the only source of genetic vari-
ation (see Figure 1 above).

The restricted permutation operator randomly chooses
the chromosome, the multigene family to be modified and

the genes to be exchanged. Each chromosome is only modi-
fied once by this operator.

Consider another chromosome composed of two
multigene families, each with 13 members:

01234567890120123456789012
ikmfghdeljcabLJIHG CDBKMFAE                  (3.7)

Suppose genes 5 and 9 in FMG
2
 were chosen to be exchanged.

Then the following chromosome is formed:

01234567890120123456789012
ikmfghdeljcabLJIHG MDBKCFAE                  (3.8)

Restricted permutation, when used at small rates and in
combination with inversion, might be useful to make finer
adjustments. However, for the problems analyzed in this
work, when permutation is used in conjunction with inver-
sion the success rate slightly decreases.

3.4. Other search operators

The gene deletion/insertion operator introduced in section
3.2 permits only the deletion/insertion of genes, i.e., the
smallest sequence composed of only one element. Another
operator can be easily implemented that deletes/inserts se-
quences of varied length. This operator was named “sequence
deletion/insertion”, and corresponds to the “displacement
mutation” operator in the classification proposed by
Larrañaga et al. (1998). The deletion/insertion of sequences
of different lengths might appear more advantageous than
the deletion/insertion of genes, but experience shows the op-
posite (see Figure 2 below). In fact, this operator produces
results which are even worse than the restricted permutation
operator in the traveling salesperson problem with 19 cities
(compare with Figure 1 above). In fact, an identical analysis
done with this operator showed that the sequence deletion/
insertion is incapable of solving the 19 cities TSP using popu-
lation sizes of 100 individuals for 200 generations. Thus, an
easier version of the TSP with 13 cities (with the cities also
placed in a rectangle so that the shortest tour is 14) was cho-
sen in order to make comparisons between gene deletion/
insertion and sequence deletion/insertion (Figure 2). For this
analysis, a population size of 100 individuals and an evolu-
tionary time of 200 generations were used and the success
rate was also evaluated over 100 identical runs.

The other operator to be analyzed here is an extension to
the restricted permutation operator of section 3.3. Recall that
that kind of permutation operator exchanges only a pair of
genes per chromosome, i.e., the restricted permutation rate
p

rp
 is evaluated by p

rp
 = N

C 
/P, where N

C
 represents the number

of chromosomes modified. A more generalized version of
this operator can be easily implemented where a different
number of genes in a chromosome can trade places with other
genes according to a certain rate. More formally, the gener-
alized permutation rate p

gp
 is evaluated by p

gp
 = N

G 
/(C

L
.P),

where N
G
 represents the number of genes modified and C

L
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the chromosome length. This operator was named “gener-
alized permutation” and corresponds to the “exchange re-
peated mutation” operator in Larrañaga et al. (1998). Again,
a more generalized permutation might appear more effi-
cient than the restricted permutation described above, but
experience shows that restricted permutation is slightly
better (see Figure 3 below). For instance, in the TSP with
19 cities (see Figure 1 above), this operator performed

worse than restricted permutation and, in fact, was incapa-
ble of finding a perfect solution. The results obtained for
the simpler version of the TSP with 13 cities are shown in
Figure 3. In this analysis the restricted and generalized
permutation are compared using populations of 100 indi-
viduals evolving for 200 generations, i.e., exactly the same
values of P and G used to solve the much more complex
TSP with 19 cities of Figure 1.

Figure 2.  Comparison of gene deletion/insertion (Gene) with sequence deletion/insertion (Seq) on the traveling salesperson
problem with 13 cities. For this analysis P = 100 and G = 200. The success rate was evaluated over 100 identical runs.
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Figure 3.  Comparison of restricted permutation with generalized permutation on the traveling salesperson problem
with 13 cities. For this analysis P = 100 and G = 200. The success rate was evaluated over 100 identical runs.
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4. Using inversion to solve scheduling
problems

The first problem of this section is the already mentioned
TSP with 19 cities. And it has already been shown that this
problem requires only a multigene family consisting of the
genes representing the 19 cities the salesperson should visit.

The second problem is a task assignment problem and
requires two different multigene families, one containing the
agents and the other the tasks assigned to the agents.

4.1. The traveling salesperson problem

For the TSP with 19 cities there are 19! = 1.21645.1017 com-
binations to search. If the starting point is fixed (and conse-
quently the ending point), the number of possible combina-
tions is halved to 6.0823.1016. Furthermore, choosing a con-
figuration where all the cities lie in a rectangle so that the
shortest tour is 20, allows the rigorous evaluation of the per-
formance of the algorithm in terms of success rate.

Obviously, the tour length cannot be used directly as a
measure of fitness as the shorter the tour the fitter the indi-
vidual. Thus, each generation, the fitness f

i
 of an individual

program i in generation g is evaluated by the formula:

                   f
i
 = T

g
 - t

i
 + 1                                         (4.1)

where t
i
 is the length of the tour encoded in i, and T

g
 is the

length of the largest tour encoded in the chromosomes of the
current population. This way, the fitness of the worst indi-
vidual of the population is always 1. As usual in GEP, indi-
viduals are selected according to fitness by roulette-wheel
selection and each generation the best individual is cloned
unchanged into the next generation (simple elitism). The pa-
rameters used per run are summarized in the first column of
Table 1.

The results obtained by GEP are astounding if we com-
pare them with the performance of GAs to solve the 19-cit-
ies tour TSP. As a comparison, Haupt and Haupt (1998) could
not solve this problem using population sizes of 800 for 200

generations. As shown in Figure 1 above and in the first col-
umn of Table 1, GEP not only is capable of solving this prob-
lem using populations of only 100 individuals and for the
same 200 generations, but also is capable of finding the short-
est route in practically all runs (in 96% of the runs, in fact).

It is worth emphasizing that only inversion was used to
create genetic variation. And, indeed, the presence of other
genetic operators, namely gene deletion/insertion and re-
stricted permutation, decreases slightly the success rate and
therefore were not used. It seems that these operators are
unnecessary for finer adjustments whenever inversion is
doing the search.

Figure 4 shows the progression of average and best tour
for a successful run of the experiment summarized in the
first column of Table 1. Note that the evolutionary dynamics
for combinatorial problems is similar to the dynamics char-
acteristic of GAs (see, e.g., Goldberg 1989). In these dy-
namics the plot for average fitness closely accompanies the
plot for best fitness and the oscillatory pattern on average
fitness is less pronounced than in GEP dynamics (Ferreira
2002). The dynamics obtained here support the idea that sim-
ple replicator systems are fundamentally different from geno-
type/phenotype systems where a complex expression already
exists. Indeed, an extremely simple expression takes place
to express fully the chromosomes used to solve the TSP: in
fact, the chromosome itself is the phenotype or the solution.

Table 1
Parameters for the traveling salesperson problem with 19
cities (TSP) and for the task assignment problem (TAP).

Figure 4.  Progression of average tour of the population and the
best tour for a successful run of the experiment summarized in
the first column of Table 1 (TSP with 19 cities).
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Figure 5.  The task assignment problem. Each assistant (1-6)
should be assigned to one collection of books (A-F) based on
the rates at which books are shelved per minute (fitness
cases). Shaded squares show the best assignment with the
largest sum of shelving rates, 44.
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Figure 6.  Progression of average fitness of the population and
the fitness of the best individual for a successful run of the
experiment summarized in Table 1, column 2 (TAP).
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ness of a successful run. By generation 16 an individual with
maximum fitness was found:

012345 012345
536241 EDCFBA

which corresponds to the best assignment of 44 (see also
Figure 5 above):

4.2. The task assignment problem

The task assignment problem (TAP) of this section is the toy
problem chosen by Tank and Hopfield (1987) in their Scien-
tific American article to illustrate the workings of Hopfield
networks on combinatorial cost-optimization problems.

In TAP there are n tasks that must be accomplished by
using only n workers. Each worker performs better at some
tasks and worse at others and obviously some workers are
better than others at certain tasks. The goal is to minimize
the total cost for accomplishing all tasks or, stated differ-
ently, to maximize the overall output of all the workers as a
whole.

Suppose we had to shelve n book collections in a library
using n shelving assistants. Each assistant is familiar with
the subject areas to varying degrees and shelves the collec-
tions accordingly. The data or fitness cases in the task as-
signment problem consist of the rates at which books are
shelved per minute (Figure 5).

For this simple six-by-six problem there are already
6! = 720 possible assignments of assistants to book col-
lections. The best solution has the highest sum of rates for
the chosen assistants. For the particular set of fitness cases
(see Figure 5), the best possible solution is known and cor-
responds to f

max
 = 44.

This kind of toy problem is very useful for comparing
the performance of different algorithms and, here, the po-
tentialities of inversion are further tested in the context of
chromosomes composed of more than one multigene fam-
ily. Indeed, the task assignment problem is solved very effi-
ciently using only inversion as the source of genetic varia-
tion and two MGFs: one to represent the assistants (repre-
sented by 1-6) and another to represent the book collections
(represented by A-F). The parameters used per run and the
success rate for this problem are shown in the second col-
umn of Table 1. Again, selection was made by roulette-wheel
sampling coupled with elitism. Note that this problem was
efficiently solved using extremely small populations of only
30 individuals evolving for a short period of 50 generations.

Figure 6 shows the progression of average and best fit-
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It is worth noticing that the evolutionary dynamics shown
in Figure 6 is no longer of the type expected for a GA. In
fact, it has all the characteristics of GEP dynamics with its
oscillatory pattern in average fitness and a considerable gap
between best and average fitness (Ferreira 2002). This kind
of dynamics is to be expected due to the higher complexity
required to express the chromosomes composed of two
multigene families encoding not only the MGFs’ members
but also specific interactions between them.
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5. Conclusions

In this work, a new chromosomal organization consisting of
multigene families was described. Multigene families con-
tain members of a particular class of terminals and are, there-
fore, very useful for solving scheduling problems.

Furthermore, special combinatorial search operators were
created so that both the chromosomal organization and the
composition of multigene families could be fully exploited
to solve combinatorial problems. Indeed, all the genetic
modifications made by these combinatorial-specific opera-
tors always result in valid chromosomes, i.e., chromosomes
in which both the structure of multigene families and the
balance of its members are maintained. This is obviously a
prerequisite for a good genetic operator. However, this is no
guarantee that this kind of operator will be highly effective
and, in fact, some perform better than others. The results
presented here show that inversion astoundingly surpasses
other combinatorial-specific operators such as the moder-
ately performing gene deletion/insertion and restricted per-
mutation, and the poorly performing sequence deletion/in-
sertion and generalized permutation. And, no doubt, surpasses
all the modified forms of crossover especially tailored to
deal with combinatorial problems.

In addition, it was also shown that solutions to schedul-
ing problems are better found if the search is exclusively
done by inversion. Indeed, mixing inversion with other op-
erators, albeit combinatorial-specific, results in a decrease
in performance.

The performance of inversion was further evaluated on
two scheduling problems: the difficult TSP with 19 cities
that required only one multigene family and the task assign-
ment problem that required two multigene families. In both
cases, the new algorithm performed with high efficiency,
solving, with less resources and with almost maximum suc-
cess rate (96%), a problem the GA could not solve (TSP
with 19 cities).
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