© Candida Ferreira

Gene Expression Programming: a New Adaptive

Algorithm for Solving Problems

Candida Ferreira
1. candidaf@gene-expression-programming.com
2. http://www.gene-expression-programming.com
3. Departamento de Ciéncias Agrarias, Universidade dos Acores, Terra Cha, 9701-851,
Angra do Heroismo, Portugal

Gene expression programming, a genome/phenome genetic algorithm (linear and non-linear), is pre-
sented here for the first time as a new technique for creation of computer programs. Gene expression
programming uses character linear chromosomes composed of genes structurally organised in a head
and a tail. The chromosomes function as a genome and are subjected to modification by means of
mutation, transposition, root transposition, gene transposition, gene recombination, 1-point and 2-
point recombination. The chromosomes encode expression trees which are the object of selection. The
creation of these separate entities (genome and expression tree) with distinct functions allows the
algorithm to perform with high efficiency: in the symbolic regression, sequence induction and block
stacking problems it surpasses genetic programming in more than two orders of magnitude, whereas
in the density-classification problem it surpasses genetic programming in more than four orders of
magnitude. The suite of problems chosen to illustrate the power and versatility of gene expression
programming includes, besides the above mentioned problems, two problems of Boolean concept
learning: the 11-multiplexer and the GP rule problem.

1. Introduction sity, resembles an hypothetical Protein World. Only when
molecules capable of replication joined molecules with
Gene expression programming (GEP) is, like genetic atatalytic activity, forming an indivisible whole, was it pos-
gorithms (GAs) and genetic programming (GP), a genetgible to create more complex systems and, ultimately, the
algorithm as it uses populations of individuals, selects thefirst cell. Since then, the genome and phenome mutually
according to fitness, and introduces genetic variation usresume one another and neither can function without the
ing one or more genetic operators [1]. The fundamentather. Similarly, the chromosomes and expression trees of
difference between the three algorithms reside in the n@EP mutually presume one another and neither exists with-
ture of the individuals: in GAs the individuals are lineaput the other.
strings of fixed length (chromosomes); in GP the individu- The advantages of a system like GEP are clear from
als are non-linear entities of different sizes and shapes (pafis¢ure, but the most important should be emphasised: First,
trees); and in GEP the individuals are encoded as linghe chromosomes are simple entities: linear, compact, rela-
strings of fixed length (the genome or chromosomes) whigively small, easy to genetically manipulate (replicate, mu-
are afterwards expressed as non-linear entities of differeate, recombine, transpose, etc.). Second, the expression
sizes and shapes (simple diagram representations or g&ss (ETs) are exclusively the expression of the respective
pression trees). chromosomes; they are the entities upon which selection
If we have in mind the history of life on Earth [2], weacts and, according to fitness, they are selected to repro-
can see that the difference between GAs and GP is omlyice with modification. During reproduction it is their
superficial: both systems use only one kind of entity whicbhromosomes, not the ETs, which are reproduced with
functions both as genome and body (phenome). These kimddification and transmitted to the next generation.
of systems are condemned to have one of two limitations: The interplay of chromosomes and ETs implies a uni-
if they are easy to genetically manipulate, they lose in fungersal translation system to translate the language of chro-
tional complexity (the case of GAs); if they exhibit a cermosomes into the language of ETs. The structural organi-
tain amount of functional complexity, they are extremelgation of GEP chromosomes presented in this work al-
difficult to reproduce with modification (the case of GP)lows such an interplay, as any modification made in the
GAs, with their simple genome and limited structurafjenome results always in syntactically correct ETs or pro-
and functional diversity, resemble a primitive RNA Worldgrams. The varied set of genetic operators developed to
[2], whereas GP, with its structural and functional diverintroduce genetic diversity in GEP populations always pro-

1

© Candida Ferreira

duce valid ETs. Thus, GEP is a very simple, life-like corr
plex system capable of adaptation and evolution.

On account of these characteristics, GEP is extreme
versatile and greatly surpasses the existing evolutione
techniques. Indeed, in the most complex problem presen
in this work, the evolution of cellular automata rules fo
the density-classification task, GEP surpasses GP in m(
than four orders of magnitude.

In the present work | show the structural and func
tional organisation of GEP chromosomes; how the lai
guage of the chromosomes is translated to the language
the ETs; how the chromosomes function as genotype a
the ETs as phenotype; and how an individual program
created, matured, and reproduced, leaving offspring wi
new properties, thus, capable of adaptation. The pay
proceeds with a detailed description of GEP and the illu
tration of this technique with six examples chosen fror
different fields, comparing the performance of GEP witl
GP.

2. Gene expression algorithms: an overview

The flowchart of a gene expression algorithm (GEA) i
shown in Figure 1. The process begins with the randa
generation of the chromosomes of each individual of tt
initial population. Then the chromosomes are express
and the fitness of each individual is evaluated. The inc
viduals are then selected according to fitness to reprodt
with modification, leaving progeny with new traits. The
individuals of this new generation are, in their turn, suk
jected to the same developmental process: expressior
the genomes, confrontation of the selection environmel
and reproduction with modification. The process is repeat
for a certain number of generations or until a solution h:
been found.

Note that reproduction includes not only replicatiot
but also the action of genetic operators capable of creati
genetic diversity. During replication, the genome is rigor
ously copied and transmitted to the next generation. Ob
ously, replication alone can not introduce variation: onl
with the action of the remaining operators is the genet
variation introduced in the population. These operato
randomly select the chromosomes to be modified. Thus,
GEP, a chromosome might be modified by one or sevel
operators at a time or not be modified at all. The details
the implementation of GEP operators are shown in se
tion 5.

3. The genome of GEP individuals

In GEP, the genome or chromosome consists of a line

Create Chromossomes of Initial Population

l

Express Chromossomes

|

Execute Each Program

L

Evaluate Fitness

Terminate

Iterate or Terminate? End

Iterate

Keep Best Program

i

Select Programs

Replication

\

Mutation

\

IS transposition

\

RIS transposition

%

Gene Transposition

1\

1-Point Recombination

v

2-Point Recombination

2

Gene Recombination

uononpolidey

Prepare New Programs of Next Generation

symbolic string of fixed length composed of one or moresigure 1. The flowchart of a gene expression algorithm.

genes. We will see that despite their fixed length, GEP chro-

mosomes code for ETs with different sizes and shapes.'start’ codon, continues with the amino acid codons, and
ends at a termination codon. However, a gene is more than
the respective ORF, with sequences upstream the start
codon and sequences downstream the stop codon. Al-
The structural organisation of GEP genes is better undéinough in GEP the start site is always the first position of a
stood in terms of open reading frames (ORFs). In biologgene, the termination point not always coincides with the
an ORF, or coding sequence of a gene, begins with tlst position of a gene. It is common for GEP genes to

3.1. Open reading frames and genes

2

© Candida Ferreira

have non-coding regions downstream the termination point. Looking at the structure of GEP ORFs only, it is diffi-
(For now we will not consider these non-coding regiongult or even impossible to see the advantages of such a
because they do not interfere with the product of exprespresentation, except perhaps for its simplicity and el-
sion.) egance. However, when ORFs are analyzed in the context
Consider, for example, the algebraic expression: of a gene, the advantages of such representation become
obvious. As | said, GEP chromosomes have fixed length,

\/(a +b)><(c —d) (3.1) and they are composed of one or more genes of equal
length. Therefore the length of a gene is also fixed. Thus,
It can also be represented as a diagram or ET: in GEP, what varies is not the length of genes which is
constant, but the length of the ORFs. Indeed, the length of
@ an ORF may be equal or less than the length of the gene.
In the first case, the termination point coincides with the
° end of the gene, and in the last case, the termination point
is somewhere upstream the end of the gene.
So, what is the function of these non-coding regions in
e 9 GEP genes? In fact, they are the essence of GEP and
evolvability, for they allow the modification of the genome
@ ° @ using any genetic operator without restrictions, producing

always syntactically correct programs without the need for
where ‘Q’ represents the square root function. This kinalcomplicated editing process or highly constrained ways
of diagram representations are in fact the phenotype afimplementing genetic operators. Indeed, this is the para-
GEP individuals, being the genotype easily inferred froomount difference between GEP and previous GP imple-
the phenotype as follows: mentations, with or without linear genomes (for a review
on GP with linear genomes see [4]).
01234567
Q*+-abcd (3.2) 3.2. GEP genes

which is the straightforward reading of the ET from left t&SEP genes are composed of a head and a tail. The head
right and from top to bottom. The expression 3.2 is arontains symbols that represent both functions and termi-
OREF, starting at ‘Q’ (position 0) and terminating at ‘d’nals, whereas the tail contains only terminals. For each
(position 7). These ORFs were named K-expressions (frggroblem, the length of the heduyl,is chosen, whereas the
KARVA language). Note that this ordering differs fromlength of the tailt, is a function oh and the number of
both the postfix and prefix expressions used in differemtrguments of the function with more argumentsnd is

GP implementations with arrays or stacks [3]. evaluated by the equation:
The inverse process, i.e. the translation of a K-expres-
sioninto an ET, is also very simple. Consider another ORF, t =h [ﬂn —1)+1 (3.4)

the following K-expression:
Consider a gene composed of {Q, *, /, -, +, a, b}. In
01234567890 this casen = 2. For instance, for dn=10,t = 11, and the
Q*+*a*Qaaba (3.3) length of the gene is 10+11=21. One such gene is shown
bellow (the tail is shown in bold):
The start position (position 0) in the ORF corresponds to
the root of the ET. Then, bellow each function are attached 012345678901234567890
as many branches as there are arguments to that function.t*Q-/b*aaQb aabaabbaaab (3.5)
The assemblage is complete when a base line composed
only of terminals (the variables or constants used in a prdbcodes for the following ET:
lem) is formed. In this case, the following ET is formed:
©,

© @ O
O, OO NO

O, O, ® ® © ®
® O © @ o

e Q e In this case, the ORF ends at position 10, whereas the gene

ends at position 20.
3

© Candida Ferreira

Suppose now a mutation occurred at position 9, chanigs expression results in the following ET:
ing the ‘b’ into ‘+'. Then the following gene is obtained:
012345678901234567890 6

+Q-/b*aaQ+ aabaabbaaab (3.6) @ a

And its expression gives:

In this case, the ORF ends at position 7, shortening the

() (o) () original ET in 3 nodes.

Despite its fixed length, each gene has the potential to
code for ETs of different sizes and shapes, being the sim-

@ 6 @ ° plest composed of only one node (when the first element
of a gene is a terminal) and the biggest composed of as
e e 0 many nodes as the length of the gene (when all the ele-

ments of the head are functions with the maximum number
of argumentsn).
Itis evident from the examples above, that any modifi-
cation made in the genome, no matter how profound, al-
In this case, the termination point shifts two positions tevays results in a valid ET. Obviously the structural organi-
the right (position 12). sation of genes must be preserved, always maintaining the
Suppose now that a more radical modification occurredpundaries between head and tail and not allowing sym-
and the symbols at positions 6 and 7 in the gene 3.5 abadvels representing functions on the tail. In section 5 is shown
change respectively into '+’ and ¥, creating the follow-how GEP operators work and how they modify the ge-

ing gene: nome of GEP individuals during reproduction.
012345678901234567890 3.3. Multigenic chromosomes
+Q-/b*+*Qb aabaabbaaab (3.7)

GEP chromosomes are usually composed of more than

Its expression gives: one gene of equal length. For each problem or run, the
number of genes, as well as the length of the head, is cho-
sen. Each gene codes for a sub-ET and the sub-ETs inter-
act with one another forming a more complex multi-subunit
ET. The details of such interactions will be fully explained
in section 3.4.

Consider, for example, the following chromosome with
length 27, composed of three genes (the tails are shown in
bold):

012345678012345678012345678
-b*b abbab *Qb+abbba -*Qa bbaba (3.9)

It has three ORFs, and each ORF codes for a sub-ET (Fig-
ure 2). Position zero marks the start of each gene; the end
of each ORF, though, is only evident upon construction of
the respective sub-ET. As shown in Figure 2, the first ORF
In this case the termination point shifts several positions émds at position 4 (sub-BTthe second ORF ends at po-
the right (position 14). sition 5 (sub-ET); and the last ORF also ends at position
Obviously the opposite also happens, and the ORF3s(sub-ET). Thus, GEP chromosomes code for one or
shortened. For example, consider gene 3.5 above, and smpre ORFs, each expressing a particular sub-ET. Depend-
pose a mutation occurred at position 5, changing the ‘iig on the task at hand, these sub-ETs may be selected

into ‘a”: individually according to their respective fitness (for ex-
ample, in problems with multiple outputs), or they may

012345678901234567890 form a more complex, multi-subunit ET and be selected
+Q-/baaaQb aabaabbaaab (3.8) according to the fitness of the whole, multi-subunit ET.

The patterns of expression and the details of selection will

4

© Candida Ferreira

Yo y Y

-b*b abbabiQb+ abbba*Qa bbaba

b)
Sub-ET, Sub-ET, Sub-ET,

3

Figure 2. Expression of GEP genes as sub-ETs. a) A three-genic chromosome with the tails shown in bold. The arrows show the
termination point of each gene. b) The sub-ETs codified by each gene.

be discussed throughout this paper. However, keep in miegpressions, any mathematical or Boolean function can be
that each sub-ET is both a separate entity and a part afsed to link the sub-ETs in a final, multi-subunit ET. The
more complex, hierarchical structure, and, as in all confunctions most chosen are addition for algebraic sub-ETs,
plex systems, the whole is more than the sum of its partsid OR or IF for Boolean sub-ETs.
In the current version of GEP the linking function is a

3.4. Expression trees and the phenotype priori chosen for each problem, but it can be easily intro-

duced in the genome, for instance in the last position of
In nature, the phenotype has multiple levels of complexitghromosomes, and be also subject to adaptation. Indeed,
being the most complex the organism itself. But tRNAgreliminary results suggest that this system works very well.
proteins, ribosomes, cells, etc., are also products of ex- Figure 3 illustrates the linking of two sub-ETs by addi-
pression, and all of them are ultimately encoded in the gigen. Note that the root of the final ET (+) is not encoded
nome. by the genome. Note also that the final ET could be lin-

In contrast to nature, in GEP the expression of the gearly encoded as the following K-expression:

netic information is very simple. Nonetheless, GEP chro-
mosomes are composed of one or more ORFs, and obvi- 0123456789012
ously the encoded individuals have different degrees of +Q**-bQ+abbba (3.10)
complexity. The simplest individuals are encoded in a sin-
gle gene, and the ‘organism’ is, in this case, the productidbwever, to evolve solutions for complex problems, it is
a single gene - an ET. In other cases, the ‘organism’ ign@ore effective the use of multigenic chromosomes, for they
multi-subunit ET, in which the different sub-ETs are linkegbermit the modular construction of complex, hierarchical
together by a particular function. In other cases, the ‘ostructures, where each gene codes for a small building
ganism’ emerges from the spatial organization of differetock. These small building blocks are separated from each
sub-ETs (in planning and problems with multiple outputsther, and thus can evolve independently. For instance, if
for example). And, in yet other cases, the ‘organismie tried to evolve a solution for the symbolic regression
emerges from the interactions of conventional sub-ETs wigiltoblem presented in section 6.1 with single-gene chro-
different domains (neural networks, for example). Howmosomes, the success rate would fall significantly (see sec-
ever, in all cases, the whole ‘organism’ is encoded int®n 6.1). In that case the discovery of small building blocks

linear genome. is more constrained as they are no longer free to evolve
independently. These kind of experiments show that GEP
3.4.1. Posttranslational modifications is in effect a powerful, hierarchical invention system capa-

ble of easily evolving simple blocks and using them to form
We have seen that translation results in the formation wfore complex structures.
sub-ETs with different complexity but the complete ex- Figure 4 shows another example of posttranslational
pression of the genetic information requires the interaniodification, where three Boolean sub-ETs are linked by
tion of these sub-ETs with one another. One of the maste function IF. Again, the multi-subunit ET could be
simple interactions is the linking of sub-ETs by a particuldmearized as the following K-expression:
function. This process is similar to the assemblage of dif-
ferent protein subunits in a multi-subunit protein. 01234567890123456789012

When the sub-ETs are algebraic expressions or Boolean IINAIAINulca3aa2acAOab2 (3.11)

© Candida Ferreira

a)
012345678012345678
Q*Q+bbaaa *-ba baabb

b) Sub ET, Sub ET, c) ET

Figure 3. Expression of multigenic chromosomes as expression trees. a) A two-
genic chromosome with the tails shown in bold. b) The sub-ETs codified by each
gene. c) The result of posttranslational linking with addition.

a)
1Al ca3aa2acINNAOab2u3c31c Aulfa3ll2cac

b) Sub ET, Sub-ET, Sub ET,
O@O®® @@ (é
c) ET

Figure 4. Expression of multigenic chromosomes as expression trees. a) A three-genic
chromosome with the tails shown in bold (‘N’ is a function of one argument and repre-
sents NOT; ‘A’ and ‘O’ are functions of two arguments and represent respectively AND
and OR,; ‘I is a function of three arguments and represents IF; the remaining symbols
are terminals). b) The sub-ETs codified by each gene. c) The result of posttranslational
linking with IF.

© Candida Ferreira

a)
131u3ab2ubab23c3ua3l1a333au3

b)

Figure 5. Expression of multigenic chromosomes as expression trees. a) A 27-genic chromosome composed of one-element genes.
b) The result of posttranslational linking with IF.

Figure 5 shows another example of posttranslationdll. Fitness functions

modification, where the sub-ETs are of the simplest kind

(one-element sub-ETSs). In this case, the sub-ETs are linkBde important application of GEP is symbolic regression,
3 by 3 with the IF function, then these clusters are, in theirthere the goal is to find an expression that performs well
turn, linked also 3 by 3 with another IF function, and théor all fithess cases within a certain error of the correct
three last clusters are also linked by IF, forming a largalue. For some mathematical applications it is useful to
multi-subunit ET. This kind of chromosomal architecturaise small relative or absolute errors in order to discover a
was used to evolve solutions for the 11-multiplexer prolvery good solution. But if the range of selection is exces-
lem of section 6.5.2 and also to evolve cellular automasévely narrowed, populations evolve very slowly and are
rules for the density-classification problem (results nahcapable of finding a correct solution. In the other hand,
shown). Again, the individual of Figure 5 could be conif the opposite is done and the range of selection is broaden,

verted in the following K-expression: numerous solutions will appear with maximum fitness that
are far from good solutions.
[mim131u3ab2ubab23c3ua31a333au3 (3.12) To solve this problem, an evolutionary strategy was

devised that permits the discovery of very good solutions
And finally, the full expression of certain chromosomesvithout halting evolution. So, the system is left to find for
requires the sequential execution of small plans, where titgelf the best possible solution within a minimum error.
first sub-ET does a little work, the second continues frofffor that a very broad limit for selection to operate is given,
that, etc. The final plan results from the orderly action afsually an absolute error of 100, that allows the selection
all sub-plans (see the block stacking problem in sectiaf very unfit individuals in earlier generations. However,
6.3). in later generations selection operates over these cumber-
The type of linking function, as well as the number ofome individuals and populations adapt wonderfully, find-
genes and the length of each gene, are a priori chosenify very good solutions that progressively approach a per-
each problem. So, we can always start by using a singfeet solution. Mathematically this can be expressed by the
gene chromosome, gradually increasing the length of tlquation:
head; if it becomes very large, we can increase the number
of genes and of course choose a function to link them. We f =M —‘E‘ (4.2)
can start with addition or OR, but in other cases another
linking function might be more appropriate. The idea, ofvhereM is the range of selection, akdis the absolute
course, is to find a good solution, and GEP provides tlegror between the number generated by the ET and the

meanings of finding one. target value. The precision for the absolute error is usually
very small, for instance 0.01, but if a perfect solution could
4. Fitness functions and selection not be found within this value, the system can find the op-

timal solution for itself. For example, for a set of 10 fithess
In this section, two examples of fitness functions are deases and aM = 100,f = 1000 if all the values are
scribed. Other examples of fithess functions are given within 0.01 of the correct value.
the problems studied in section 6. The success of a prob- In another important GEP application, Boolean con-
lem greatly depends on the way the fitness function is deept learning, the fitness of an individual is a function of
signed: the goal must be clearly and correctly defined the number of fithess cases on which it performs correctly.
order to make the system evolve in that direction. For most Boolean applications, though, it is fundamental

to penalize individuals able to correctly solve about 50%

© Candida Ferreira

of fitness cases, as most probably this only reflects the 5@4. Replication

likelihood of correctly solving a 2-binary Boolean func-

tion. So, it is advisable to only select individuals capablélthough vital, replication is the most uninteresting op-
of solving more than 50-75% of fitness cases. Below thatator: alone it contributes nothing to genetic diversifica-
mark a symbolic value of fithess can be attributed, for irtion. (Indeed, replication, together with selection, is only
stancef = 1. Usually the process of evolution is put incapable of causing genetic drift.) According to fithess and
motion with this unfit individuals, for they are very easilythe luck of the roulette, chromosomes are faithfully cop-
created in the initial population. However, in future genied into the next generation. The fitter the individual the
erations, highly fit individuals start to appear, rapidihigher the probability of leaving more offspring. Thus,
spreading in the population. For easy problems, likéuring replication the genomes of the selected individuals
Boolean functions with 2-5 arguments, this is not reallgre copied as many times as the outcome of the roulette.
important, but for more complex problems it is convenierthe roulette is spun as many times as there are individuals
to choose a bottom line for selection. For these problenis the population, maintaining always the same population
the following fitness function can be used: size.

If i>3%C ,then f=i;else f=1 (42) 5.2. Mutation

wherei is the number of fitness cases correctly evaluatemjutations can occur anywhere in the chromosome. How-

andCis the total number of fitness cases. ever, the structural organisation of chromosomes must re-
main intact. In the heads any symbol can change into an-
4.2, Selection other (function or terminal); in the tails terminals can only

change into terminals. This way, the structural organisa-
In GEP, individuals are selected according to fitness hion of chromosomes is maintained, and all the new indi-
roulette-wheel sampling [5]. In truth, | never experimentediduals produced by mutation are structurally correct pro-
with other selection methods for I'd rather let ‘nature’ takgrams. Typically, a mutation rate § equivalent to 2 point
its course. It is true that with this method, often the begiutations per chromosome is used. Consider the follow-
individuals are lost, but this might have some advantagggy 3-genic chromosome:
and make populations jump to another, very distant fithess
optimum. Of course, this deserves a careful study, but the 012345678012345678012345678
high performance of GEP indicates that this algorithm can -+-+ abaaa/bb/ ababb *Q*+ aaaba
very efficiently walk (I would say fly, even) the fitness land-
scape, easily finding one of the highest optima. However, Suppose a mutation changed the element in position 0
the simple form of elitism implemented in GEP guaranteés gene 1 to ‘Q’; the element in position 3 in gene 2 to ‘Q’;
the survival and cloning of the best individual to the nexind the element in position 1 in gene 3 to ‘b’, obtaining:
generation. This way the best trait is never lost.

012345678012345678012345678

5. Reproduction with modification Q+-+abaaa /bbQ ababb *b*+ aaaba

According to fitness and the luck of the roulette, individu- Note that if a function is mutated into a terminal or
als are selected to reproduce with modification, creatingce versa, or a function of one argument is mutated into a
the necessary genetic diversification that allows adapt@mnction of two arguments or vice versa, the ET is modi-
tion in the long run. fied drastically. Note also that the mutation on gene 2 is an
Except for replication, where the genomes of all thexample of a neutral mutation, as it occurred in the non-
selected individuals are rigorously copied, all the remairoding region of the gene.
ing operators randomly pick chromosomes to be subjected It is worth noticing that in GEP there are no constraints
to a certain modification. However, except for mutationpoth in the kind of mutation and the number of mutations
each operator is not allowed to modify a chromosome mai¥ga chromosome: in all cases the newly created individu-
than once. For instance, for a transposition rate of O4ls are syntactically correct programs.
seven out of 10 different chromosomes are randomly cho- In nature, a point mutation in the coding sequence of a
sen. gene can slightly change the structure of the protein or not
Furthermore, in GEP, a chromosome might be chosehange it at all, as neutral mutations are fairly frequent
by one or several genetic operators that introduce vari@er instance, mutations in introns, mutations that result in
tion in the population. This feature also distinguishes GElRe same amino acid due to the redundancy of the genetic
from GP where an entity is never modified by more thagode, etc). Here, although neutral mutations exist, a muta-
one operator at a time [6]. Thus, in GEP, the modificaion in the coding sequence of a gene has a much more
tions of several genetic operators accumulate during figrofound effect: it usually drastically reshapes the ET.
production, producing offspring very different from the In contrast to the current thought in evolutionary com-
parents. putation, this capacity to reshape profoundly the ET is fun-
The section proceeds with the detailed description @amental for evolvability. An exhaustive analysis of GEP
GEP operators, starting obviously with replication. operators is beyond the scope of this paper, however, the

8

© Candida Ferreira

results presented in this work clearly show that our very During transposition, the sequence upstream the inser-
human wish not to disrupt the small functional blocks a$on site stays unchanged, whereas the sequence down-
they appear in the expression trees and recombine thetream the copied IS element loses, at the end of the head,
carefully (as is done in GP) is conservative and worlas many symbols as the length of the IS element (in this
poorly. In a genome/phenome system like GEP, the sysase the sequence ‘a*b’ was deleted). Note that, despite
tem can find ways of creating and using these functiontis insertion, the structural organisation of chromosomes
blocks much more efficiently. The system’s ways are onlig maintained, and therefore all newly created individuals
evident when they emerge in the expression tree. are syntactically correct programs. Note also that transpo-
sition can drastically reshape the expression tree, and the
5.3. Transposition and insertion sequence elements more upstream the insertion site the more profound the
change.
The transposable elements of GEP are fragments of the
genome that can be activated and jump to another placéi3.2. Root transposition
the chromosome. In GEP there are three kinds of trans-
posable elements: i) short fragments with a function &ll RIS elements start with a function, and thus are chosen
terminal in the first position that transpose to the head among the sequences of the heads. For that, a point is ran-
genes except to the root (insertion sequence elementgdomly chosen in the head and the gene is scanned down-
IS elements); i) short fragments with a function in the firsstream until a function is found. This function becomes the
position that transpose to the root of genes (root IS elgtart position of the RIS element. If no functions are found,
ments or RIS elements); iii) and entire genes that trarisdoes nothing.
pose to the beginning of chromosomes. Typically a root transposition ratg () of 0.1 and a set
The existence of IS and RIS elements is a remnantaffthree RIS elements of different sizes are used. This op-
the developmental process of GEP, as the first GEA userhtor randomly chooses the chromosomes, the gene to be
only single-gene chromosomes, and in such systems a geraified, the RIS element, and its length. Consider the
with a terminal at the root was of little use. When multigenifollowing 2-genic chromosome:
chromosomes were introduced this feature remained as
these operators are important to understand the mech&2345678901234567890012345678901234567890
nisms of genetic variation . Indeed, the transforming powera*+-+-Q/abababbbaaaQ*h/ +bbabbaaaaaaaabbb
of these operators show clearly that there is no need to be
conservative in evolutionary computation. For instanc&uppose that the sequence ‘+bb’ in gene 2 was chosen to
root insertion (the most disruptive operator) alone is c&e an RIS element. Then, a copy of the transposon is made
pable of finding solutions by creating repetitive patternto the root of the gene, obtaining:
(this is one of the patterns observed, but certainly others
exist). 012345678901234567890012345678901234567890
-ba*+-+-Q/abababbbaaa +bbQ*b/ +bbaaaaaaaabbb
5.3.1. Transposition of IS elements
During root transposition, the whole head shifts to ac-
Any sequence inthe genome m|ght become an IS e|emé}ﬂmm0date the RIS element, IOSing, at the same time, the
being therefore these elements randomly selected throudfft symbols of the head (as many as the transposon length).
out the chromosome. A copy of the transposon is ma&é with IS elements, the tail of the gene SUbjeCted to trans-

and inserted at any position in the head of a gene, excBgfition and all nearby genes stay unchanged. Note, again,
at the start position. that the newly created programs are syntactically correct

Typically, a transposition rat@ of 0.1 and a set of because the structural organisation of the chromosome is
! i - . .

three IS elements of different length are used. The traf8aintained. -
position operator randomly chooses the chromosomes, the The modifications caused by root transposition are
IS element, the target site, and the length of the transpos8itremely radical, because the root itself is modified. In

Consider the 2-genic chromosome bellow: nature, if a transposable element is inserted at the begin-
ning of the coding sequence of a gene, it will certainly
012345678901234567890012345678901234567890 drastically change the corresponding protein, specially if

*.+*3-+a*bbabbaabababQ**+abQbb*aa bbaaaabba the insertion caused a frameshift mutation. Like mutation

and IS transposition, root insertion has a tremendous trans-
Suppose that the sequence ‘bba’ in gene 2 (positions f@rming power and is excellent to create genetic variation.
14) was chosen to be an IS element, and the target giteis kind of operators prevent populations from becom-
was bond 6 in gene 1 (between positions 5 and 6). Thering stuck in local optima, finding easily and rapidly good
cutis made in bond 6 and the block ‘bba’ is copied into trg®lutions.

site of insertion, obtaining:
5.3.3. Gene transposition

012345678901234567890012345678901234567890
*-+*a- bba-+babbaabababQ**+abQbb*aa bbaaaabba In gene transposition an entire gene functions as a
transposon and transposes itself to the beginning of the

9

© Candida Ferreira

chromosome. In contrast to the other forms of transposi- With this kind of recombination, most of the times, the
tion, in gene transposition the transposon (the gene)afspring created exhibits different properties from those
deleted in the place of origin. This way, the length of thef the parents. One-point recombination, like the above
chromosome is maintained. mentioned operators, is a very important source of genetic
The chromosome to undergo gene transposition is ravariation, being, after mutation, one of the operators most
domly chosen, and one of its genes (except the first, obelosen in GEP. The 1-point recombination ratg (sed
ously) is randomly chosen to transpose. Consider the faepends on the rates of other operators. Typically a global
lowing chromosome composed of 3 genes: crossover rate of 0.7 (the sum of the rates of the three
kinds of recombination) is used.
012345678012345678012345678

*a-*abbab -QQ/aaabb Q+abababb 5.4.2. Two-point recombination
Suppose gene 2 was chosen to undergo gene transpbisR-point recombination the chromosomes are paired and
tion. Then the following chromosome is obtained: the two points of recombination are randomly chosen. The
material between the recombination points is afterwards
012345678012345678012345678 exchanged between the two chromosomes, forming two
-QQ/aaabb *a-*abbabQ+abababb new daughter chromosomes. Consider the following par-

ent chromosomes:

Note that for numerical applications where the func-
tion chosen to link the genes is addition, the expression 0123456789001234567890
evaluated by the chromosome is not modified. But the situ- +*a*bbcccac*baQ*acabab -[1]
ation differs in other applications where the linking func- *cbb+cccbcc++**bacbaab-[2]
tion is not commutative, for instance, the IF function cho-
sen to link the sub-ETs in the 11-multiplexer problem (seGuppose bond 7 in gene 1 (between positions 6 and 7) and
tion 6.5.2). However, the transforming power of gene transond 3 in gene 2 (between positions 2 and 3) were chosen
position reveals itself when this operator is conjugated witks the crossover points. Then, the paired chromosomes
crossover. For example, if two functionally identical chroare cut at these bonds, and exchange the material between
mosomes or two chromosomes with an identical gene tine crossover points, forming the offspring below:
different positions recombine, a new individual with a du-
plicated gene may appear. It is know that the duplication 0123456789001234567890
of genes plays an important role in biology and evolution +*a*bbc cbcc++* Q*acabab -[3]
(for a general reference see [7]). Interestingly, in GEP, in- *cbb+cc ccac*ba *bacbaab-[4]
dividuals with duplicated genes are commonly found in

the process of problem solving. Note that the first gene is, in both parents, split down-
stream the termination point. Indeed, the non-coding re-
5.4. Recombination gions of GEP chromosomes are ideal regions where chro-

mosomes can be split to cross over without interfering with
In GEP there are three kinds of recombination: 1-point, Zae ORFs. Note also that the second gene of chromosome
point, and gene recombination. In all cases, two parehtwas also cut downstream the termination point. How-
chromosomes are randomly chosen and paired to exchaeger, gene 2 of chromosome 2 was split upstream the ter-

some material between them. mination point, changing profoundly the sub-ET. Note also
that when these chromosomes recombined, the non-cod-
5.4.1. One-point recombination ing region of chromosome 1 was activated and integrated

in chromosome 3.
During 1-point recombination, the chromosomes cross over The transforming power of 2-point recombination is
a randomly chosen point to form two daughter chromareater than 1-point recombination, and is most useful to
somes. Consider the following parent chromosomes: evolve solutions for more complex problems, specially
when multigenic chromosomes composed of several genes

012345678012345678 are used.
-b+Qbbabb/aQbbbaab
[-a/ababb-ba-abaaa 5.4.3. Gene recombination

Suppose bond 3 in gene 1 (between positions 2 and 3) vlagiene recombination an entire gene is exchanged during
randomly chosen as the crossover point. Then, the pairedssover. The exchanged genes are randomly chosen and
chromosomes are cut at this bond, and exchange betweenupy the same position in the parent chromosomes.
them the material downstream the crossover point, forr@onsider the following parent chromosomes:
ing the offspring below:
012345678012345678012345678

012345678012345678 /aa-abaaa/a*bbaaab/Q*+aaaab

-b+ /ababb-ba-abaaa /-*/abbabQ+aQbabaa-Q/Qbaaba

/-a Qbbabb/aQbbbaab

10

© Candida Ferreira

Suppose gene 2 was chosen to be exchanged. In this &ade Symbolic regression
the following offspring is formed:
The objective of this problem is the discovery of a sym-

012345678012345678012345678 bolic expression that satisfies a set of fitness cases. Con-
/aa-abaaa Q+aQbabaa/Q*+aaaab sider we are given a sampling of the numerical values from
/-*/abbab /a*bbaaab -Q/Qbaaba the function

The newly created individuals contain genes from both y =a‘ +a’+a’ +a (6.3)

parents. Note that with this kind of recombination, similar
genes can be exchanged but, most of the times, the exer ten chosen points and we wanted to find a function
changed genes are very different and new material is intfdting those values within 0.01 of the correct value.
duced in the population. First, the set of functions F and the set of terminals T

It is worth noticing that this operator is unable to cremust be chosen. In this case F = {+, -, *, [} and T = {a}.
ate new genes: the individuals created are different arrandéen the structural organisation of chromosomes, namely
ments of existing genes. In fact, when gene recombinatitime length of the head and the number of genes, is chosen.
is used as the unigue source of genetic variation, mdtas advisable to start with short, single-gene chromosomes
complex problems can only be solved using very large irknd then gradually incredsd~igure 6 shows such an analy-
tial populations in order to provide for the necessary dsis for this problem. A equivalent to two point muta-
versity of genes. However, the creative power of GEP t®ns per chromosome anghg= 0.7 were used in all the
based not only in the shuffling of genes or building blockgxperiments in order to simplify the analysis. The set of
but also in the constant creation of new genetic materiditness case€ is shown in Table 1 and the fithess was

evaluated by equation 4.1, beikg= 100. IfE equal or
6. Gene expression programming in less than 0.01, theld = 0 andf = 100; thus forC = 10,
problem solving: six examples f .= 1000.
Note that GEP can be useful in searching the most par-

The suite of problems chosen to illustrate the functioningimonious solution to a problem. For instance, the chro-
of this new algorithm is quite varied, including not onlymosome
problems from different fields (symbolic regression, plan-
ning, Boolean concept learning, and cellular automata rules) 0123456789012
but also problems of great complexity (cellular automata *++/**aaaaaaa
rules for the density-classification task).

Problems with the kind of complexity exhibited by symwith h = 6 codes for the ET:
bolic regression, sequence induction, block stacking, or
the 11-multiplexer, are frequently used when comparisons
are made between different evolutionary algorithms [8].
The comparisons are usually made in terms of likelihood
of success and in terms of the average number of fithess-
function evaluations needed to find a correct solution.
Despite the differences between GEP and GP, the perform-
ance of these techniques can be easily compared because

identical problems can be similarly implemented due to the o ° ° e
phenotypic tree representation. {\ a {\
Comparisons are made on five problems and, when- e e e e e e

ever possible, the performance of GEP and GP is com-

pared in terms of the average number of fitness-functions

evaluations k) needed to find a correct program with avhich is equivalent to the target function. Note also that

certain probability®). F, is evaluated by the equation: ~ GEP can efficiently evolve solutions using large values of
h, i.e. is capable of evolving large and complex sub-ETs.

F,=G [P [C [R, (6.1) As shown in Figure 6, for each problem there is an optimal

chromosome length to efficiently evolve solutions. It is

whereG is the number of generatior3;the population worth noticing that the most compact genomes are not the

size;C the number of fitness cases; @dhe number of most efficient. Therefore a certain redundancy is funda-

independent runs required to find a correct solution byental to efficiently evolve good programs.

generatiorG withz=0.99 R is evaluated by the formula: In another analysis, the relationship between success
rate and?, using arh = 24 was studied (Figure 7). These
log (1 _ Z) results show the supremacy of a genotype/phenotype rep-

, =—7—=,and P, #1 (6.2) resentation, as this single-gene system which is equivalent
log @ —P,) to GP, greatly surpasses that technique [6]. However, GEP
is much more complex than a single-gene system because
whereP_is the probability of success; R = 1, then

R =1.
z 11

© Candida Ferreira

% Table 1.
Set of fithess cases for the symbolic regression
80 problem.
70 a f(a)
2.81 952.425
%0 6 1554
S| | 7.043 2866.55
3 | 8 4680
g 40
& | 10 11110
30 11.38 18386
\
20 ‘ 12 22620
J 14 41370
10 | 15 54240
) i 20 168420
0 10 20 30 40 50 60 70 80 90 100

Chromosome length
Figure 6. Variation of success rate (P,) with chromosome length.
For this analysis G =50, P = 30, and P, was evaluated over 100
identical runs.

very well with an excess of genes: the success rate for the
10-genic system is still very high (47%).

In Figure 9 another important relationship is shown:
GEP chromosomes can encode more than one gene. how the success rate depends on evolutionary @her(

Suppose we could not find a solution after the analysi®ntrast to GP where 51 generations are the norm, for
of Figure 7. Then we could increase the number of genedter that nothing much can possibly be discovered [4], in
and choose a function to link them. For instance, we coulsEP, populations can adapt and evolve indefinitely because
choose arh = 6 and then increase the number of genegw material is constantly being introduced in the genetic
gradually. Figure 8 shows how the success rate for thisol.
problem depends on the number of genes. In this analysis, Finally, suppose that the multigenic system with sub-
thep_was equivalent to two point mutations per chromoETs linked by addition could not evolve a satisfactory so-
some,p, =0.2,p, =0.5,p,=0.1,p,=0.1,p, =0.1, lution. Then we could choose another linking function, for
p, = 0.1, and three transposons (both IS and RIS elemeritstance multiplication. This process is repeated until a good
of lengths 1, 2 and 3 were used. Note that GEP can caggution has been found.

100
M, 100

90
90

80

80 ‘J
70
70 /
|
|
|

60

g g 60
j<3 [
IS s
o 50 | @
2 | 2 50
& | S >
S | S
@ 40 | @
| 40
/
30 ‘ 30
20 // 20
10 ¢ 10
0 0
0 20 40 60 80 100 120 140 160 180 200 0 1 2 3 4 5 6 7 8 9 10

Population size Number of genes

Figure 8. Variation of success rate (P,) with the number of genes.
For this analysis G =50, P=30 and h=6. P, was evaluated over
100 identical runs.

Figure 7. Variation of success rate (P.) with population size (P).
For this analysis G =50, and a medium value of h= 24 was used.

P_was evaluated over 100 identical runs.
12

© Candida Ferreira

100

90

80

70

60

50

Success rate (%)

40

30

20

10

0

—

0

50 100 150 200 250 300 350 400 450 500

Number of generations

Figure 9. Variation of success rate (P,) with the number of
generations (G). For this analysis P = 30 and a medium value of
h=39 was used. P, was evaluated over 100 identical runs.

Table 2.

As | have said, GEP chromosomes can be easily modi-
fied in order to encode the linking function as well. In this
case, for each problem the ideal linking function would be
found in the process of adaptation.

Consider for instance a multigenic system composed
of 3 genes linked by addition. As shown in Figure 8, the
success rate has in this case the maximum value of 100%.
Figure 10 shows the progression of average fitness of the
population and the fitness of the best individual for run 0
of the experiment summarised in Table 2, column 1. In this
run, a correct solution was found in generation 11 (the
sub-ETs are linked by addition):

012345678901201234567890120123456789012
_*a+aaaaaaat++a*aaaaaaa*+-a/aaaaaaaa

Mathematically it corresponds to the target function (the
contribution of each sub-ET is indicated in brackets):

y=@)+@+a+a)+(0)=a'+al+a’+a

The detailed analysis of this program shows that some
of the actions are redundant for the problem at hand, like
the addition of zero or multiplication by 1. However, the
existence of these unnecessary clusters or even
pseudogenes like gene 3 is important to the evolution of

Parameters for the symbolic regression (SR), sequence induction (Sl), block stacking (BS), and

11-multiplexer (11-M) problems.

SR Sl BS 11-M
Number of runs 100 100 100 100
Number of generations 50 100 100 400
Population size 30 50 30 250
Number of fithess cases 10 10 10 160
Head length 6 1
Number of genes 7 27
Chromosome length 39 91 27 27
Mutation rate 0.051 0.022 0.074 0.074
1-Point recombination rate 0.2 0.7 0.1 0.7
2-Point recombination rate 0.5 0.1 -- --
Gene recombination rate 0.1 0.1 0.7 --
IS transposition rate 0,1 0,1 0,1 -
IS elements length 1,2,3 1,2,3 1 -
RIS transposition rate 0.1 0.1 0.1 -
RIS elements length 1,2,3 1,2,3 1 -
Gene transposition rate 0.1 0.1 - -
Selection range 100 100 - -
Absolute error 0.01 0.0 - -
Success rate 1 0.79 0.7 0.57

© Candida Ferreira

In the sequence 1, 15, 129, 547, 1593, 3711, 7465,
1000 # 13539, 22737, 35983, 54321,..., tiie(N) term is

900

N =5a’ +4a’ +3a’ +2a, +1 (6.4)
800 wherea_ consists of the non-negative integers 0, 1, 2, 3,....

For this problem F ={+, -, *, [} and T = {a}. The set of

_:_i:tf:t”niss fitness case€ is shown in Table 4 and the fitness was
evaluated by equation 4.1, beilg= 100. Thus, if the 10
fitness cases were computed exadtly,= 1000.

Figure 11 shows the progression of average fitness of
the population and the fitness of the best individual for run
0 of the experiment summarised in Table 2, column 2. In
this run, a perfect solution was found in generation 24 (the
sub-ETs are linked by addition):

700

Fitness (max 1000)

0123456789001012345678900101234567890010123456789001...
*++—aagaaaar++ar U+ ' +aaaaaaa. .

...012345678900101234567890010123456789001
...*a/l+a-aaaaaaa-+-/**aaaaaaa**+a*+aaaaaaa

0 10 20 30 40 50

Generations Mathematically it corresponds to the target sequence (the
Figure 10. Progression of average fitness of the populationand ~ contribution of each sub-ET is indicated in brackets):

the fitness of the best individual for run 0 of the experiment sum-

marised in Table 2, column 1. y =(0) + (33 + (2a* + 4a°) + (0) + @) + (1+a) + (3

more fit individuals (compare, in Figures 6 and 8, the suc- As shown in column 2 of Table 2, the probability of
cess rate of a compact, single-genic systemtwath with success for this problem is 0.79. The comparisoR, of
other less compact systems). values obtained by GEP and GP for this problem [6] (Ta-
The comparison d¥, values obtained by GEP and GPble 3, column 2) shows that GEP surpasses GP in 98.6
[6] for this problem (Table 3, column 1) shows that GEBmes. It should be emphasised, though, that GEP not only
surpasses GP in 374 times, more than two orders of mageapable of solving this kind of problems much more ef-

nitude. ficiently than GP, but does so without usingephemeral
random constant Rvhich consists of a set of chosen num-
6.2. Sequence induction bers (terminals) that greatly hinders the usefulness of the

technique. For instance, for this sequenceRlthosen
The problem of sequence induction is a special case rahged over the integers 0, 1, 2, and 3 [6]. The advantages
symbolic regression where the domain of the independesftGEP are obvious because, first, in real life applications
variable consists of the non-negative integers. Howevave never know beforehand what kind of constants are
the sequence chosen is more complicated than the expreseded and, second, the number of elements in the termi-
sion used in symbolic regression, as different coefficientsl set is much smaller, reducing the complexity of the prob-
were used. lem.

Table 3.
Comparison of GEP with GP in symbolic regression, sequence induction, and block stacking problems.

Symbolic regression Sequence induction Block stacking

GEP GP [6] GEP GP [6] GEP GP [8]
G 50 51 100 51 100 51
P 30 500 50 500 30 500
C 10 20 10 20 10 167
Ps 1 0.35 0.79 0.15 0.7 0.767
Rz 1 11 3 29 4 4
Fz 15,000 5,610,000 150,000 14,790,000 120,000 17,034,000

14

© Candida Ferreira

Table 4.
Set of fitness cases for the se-
guence induction problem.

true, respectively), where the first three take one argu-
ment and ‘A’ takes two arguments. In this version, the ‘A
loops are processed at the beginning, are solved in a par-

a N ticular order (from bottom to top and from left to right),

1 15 the action argument is executed at least once despite the

2 129 state of the predicate argument and each loop is executed

3 547 only once, timing out after 20 iterations. The set of termi-

4 1593 nals consisted of 3 sensors {u, t, gufrent stacktop

5 3711 correct blockandnext needed blockespectively). In this

6 7465 version, ‘t’ refers only to the block on the top of the stack

7 13539 and whether it is correct or not; if the stack is empty or has
some blocks, all of them correctly stacked, the sensor re-

8 22737 . .
turnsTrue otherwise returnfalse and ‘p’ refers obvi-

9 35983 . . o

10 54321 ously to the next needed block immediately after ‘t’.

A multigenic system composed of 3 genes of length 9
was used in this problem. The linking of the sub-ETs con-
sisted of the sequential execution of each sub-ET or sub-
plan. For instance, if the first sub-ET empties all the stacks,
the next sub-ET may proceed to fill them, etc. The fitness
f was determined against 10 fitness cases (initial configura-

1000

tions of blocks). For each generation, an empty stack plus
nine initial configurations with one to nine letters in the
stack were randomly generated. The empty stack was used
to prevent the untimely termination of runs, as a fitness
point was attributed to each empty stack (see below).
However, GEP is capable of efficiently solving this prob-
lem using uniquely 10 random initial configurations (re-
sults not shown).

The fitness function was as follows: for each empty
stack one fitness point was attributed, for each partially
and correctly packed stack (i.e., with 1 to 8 letters in the
case of the word “universal”) two fitness points were at-
tributed, and for each completely and correctly stacked
word 3 fitness points were attributed. Thus, the maximum
fithess was 30. The idea was to make the population of
programs hierarchically evolve solutions toward a perfect
plan. And, in fact, usually the first useful plan discovered
empties all the stacks, then some programs learn how to
partially fill those empty stacks, and finally a perfect plan
0 is discovered that fills the stacks completely and correctly
0 20 40 . 60 80 100 (see Figure 12).

Generations Figure 12 shows the progression of average fitness of
the population and the fitness of the best individual for run

900

800

700

——Best Ind

—e— Avg fitness

600

Fitness (max 1000)

Figure 11. Progression of average fitness of the population and

the fitness of the best individual for run O of the experiment sum-
marised in Table 2, column 2.

6.3. Block stacking

2 of the experiment summarised in Table 2, column 3. In
this run, a perfect plan was found in generation 50:

012345678012345678012345678
ARCuptppuApNCptuutNtpRppptp

In block stacking, the goal is to find a plan that takes any Note that the first sub-plan removes all the blocks and
initial configuration of blocks randomly distributed betweerstacks a correct letter; the second sub-plan correctly stacks
the stack and the table and place them in the stack in #lethe remaining letters; and the last sub-plan does noth-
correct order. In this case, the blocks are the letters of ting. It should be emphasised that the plans with maximum
word “universal”. (Although the word “universal” was usedfitness evolved are in fact perfect, universal plans: each
as illustration, in this version the blocks being stacked magneration they are tested against 9 randomly generated
have identical labels like, for instance, in the word “inditnitial configurations, more than sufficient to allow the al-
vidual”.) gorithm to generalise the problem (as shown in Figure 12,

The functions and terminals used for this problem comnce reached, the maximum fitness is maintained). Indeed,
sisted of a set of actions and sensors, being F = {C, R, With the fitness function and the kind of fithess cases used,
A} (move to stagkremove from staglot, anddo until all plans with maximum fitness are universal plans.

15

© Candida Ferreira

classification problem was intensively investigated [9, 10,
11, 12], but the rules discovered by the GA performed
poorly and were far from approaching the accuracy of the
GKL rule, a human-written rule. GP was also used to evolve

30

25 rules for the density-classification task [13], and a rule was
—e—BestInd discovered that surpassed the GKL rule and other human-
—*—Avg fitness written rules.

In this section is shown how GEP was successfully
applied to this difficult problem. The rules evolved by GEP
have accuracy levels of 82.513% and 82.55%, thus ex-
ceed all human-written rules and the rule evolved by GP.

20

Fitness (max 30)

6.4.1. The density-classification task

The simplest CA is a wrap-around arrayNdfinary-state
cells, where each cell is connected toeighbors from
both sides. The state of each cell is updated by a defined
rule. The rule is applied simultaneously in all the cells, and
the process is iterated fbtime steps.

In the most frequently studied version of this problem,
N =149 and the neighborhood is 7 (the central cell is rep-

0 resented by ‘u’; the = 3 cells to the left are represented
0 10 20 30 40 50 60 70 80 90 100 by ‘c’, ‘b’, and ‘a’; ther = 3 cells to the right are repre-
Generations sented by ‘1", ‘2", and ‘3’). Thus the size of the rule space

Figure 12. Progression of average fitness of the population and to search for this prob_lem is the huge number6f Rig-

the fitness of the best individual for run 2 of the experimentsum- ure 13 shows a CA witN = 11 and the updated state for

marised in Table 2, column 3. the cellular automaton ‘u’ upon application of a certain
transition rule.

As shown in the third column of Table 2, the probabil- 7 c b a u 12 8 ™
ity of success for this problem is 0.70. The comparison of = © o101)11 70100
F values obtained by GEP and GP for this problem (Table = 1 1

3, column 3) shows that GEP surpasses GP in 142 times,
more than two orders of magnitude. It is worth noticingrigure 13. A one-dimensional, binary-state, r =3 cellular automa-
that GP uses 167 fitness cases, cleverly constructed to coverwith N =11. The arrows represent the periodic boundary con-
the various classes of possible initial configurationsditions- The updated state is shown only for the central cell. The
A . Symbols used to represent the neighborhood are also shown.

whereas GEP uses 9 (out of 10) random initial configura=

tions. Indeed, in real life applications not always is possi-

ble to predict the kind of cases that would make the sys- The task of density-classification consists of correctly
tem discover a solution. So, algorithms capable of genattetermining whether ICs contain a majority of 1's or a

alising well in face of random fithess cases are more adiajority of 0’s, by making the system converge, respec-

vantageous. tively, to an all 1's state (black or ‘on’ cells in a space-time
diagram), and to a state of all O's (white or ‘off’ cells).

6.4. Evolving cellular automata rules for the Being the density of an IC a functionfarguments, the

density - classification problem actions of local cells with limited information and commu-

nication must be co-ordinated with one another to cor-
Cellular automata (CA) have been studied widely as thewctly classify the ICs. Indeed, to find rules that perform
are idealized versions of massively parallel, decentralizekll is a challenge, and several algorithms were used to
computing systems capable of emergent behaviors. Themelve better rules [10, 12, 13, 14]. The best rules with
complex behaviors result from the simultaneous executigrerformances of 86.0% (coevolution 2) and 85.1%
of simple rules at multiple local sites. In the density-classiccoevolution 1) were discovered using a coevolutionary
fication task, a simple rule involving a small neighborhoo@pproach between GA evolved rules and ICs [14]. How-
and operating simultaneously in all the cells of a one-dever, the aim of this section is to compare the performance
mensional cellular automaton, should be capable of makf GEP with the other genetic algorithms (GAs and GP)
ing the CA converge into a state of all 1's if the initialwhen applied to a difficult problem. And, in fact, GEP could
configuration (IC) has a higher density of 1's, or into @&volve better rules than the GP rule, using computational
state of all O's if the IC has a higher density of 0's. resources that are more than four orders of magnitude

The ability of GAs to evolve CA rules for the density-smaller than those used by GP.

16

© Candida Ferreira

6.4.2. Two GEP discovered rules Table 5.
Parameters for the density-classification task.

In one experiment F = {A, O, N, I} (‘A represents the

Boolean function AND, ‘O’ represents OR, ‘N’ represent - GEP, GEP,
NOT, and ‘I' stands for IF) and T = {c, b, a, u, 1, 2, 3} \NUmber of generations 50 50
The parameters used per run are shown in Table 5, col, " 0Pulation size 30 50
1. The fitness was evaluated against a set of 25 unbia NUmber of ICs 25 100
ICs (fitness cases). In this case, the fitness is a functior Head length 17 4
the number of IC§ for which the system stabilises cor- Number of genes 1 3
rectly to a configuration of all 0's or 1's after/@time ~ Chromosome length 52 39
steps, and it was designed in order to privilege individu: Mutation rate 0.038 0.051
capable of correctly classifying ICs both with a majority ¢ 1-Point recombination rate 0.5 0.7
1's and 0’s. Thus, if the system converged, in all cas: IS transposition rate 0.2 -
indiscriminately to a configuration of 1's or 0’s, only on: S elements length 123

fitness point was attributed; if, in some cases, the syst RIS transposition rate 0.1

correctly converged either to a configuration of 0's or 1’ RIS elements length 123

f=2; in addition, rules converging to an alternated patte:
of all 1's and all O’s configurations were eliminated, as they
are easily discovered and invade the populations impediftgms GP in more than 4 orders of magnitude (69,632
the discovery of good rules; and finally, when an individud@imes). And as John Holland said in his b&wkergence:
program could correctly classify ICs both with majoritiesrom chaos to orderIn the sciences, three orders of mag-
of 1's and O’s, a bonus equal to the number of @Csyas nitude is enough to call for a new science.” Indeed, in na-
added to the number of correctly classified ICs, being iture, the creation of an indivisible whole, consisting of a
this casd = i + C. For instance, if a program correctlygenotype and a phenotype, originated life.
classified two ICs, one with a majority of 1's and another In another experiment a rule slightly better than GEP
with a majority of 0's, it receives 2+25=27 fitness pointswith an accuracy of 0.8255, was obtained. Again, its per-
In this experiment a total of 7 runs were made. In gefiermance was determined over 100,000 unbiased ICs in a
eration 27 of run 5, an individual evolved with fitness 44149x298 lattice. In this case F = {I, M} (‘I’ stands for IF,
and ‘M’ represents the majority function with 3 arguments),
(0123456789012345678901234567890123456789012345678901 and T was obviously the same. In this case, a total of 100
OAIIAUCONObLAbLIANIb1L23U3a1 2aach3bc21 aahaalbc3bocucl3 unbiased ICs and three-genic chromosomes with sub-ETs
linked by the Boolean function IF were used. The param-
Note that the ORF ends at position 28. This program hagers used per run are shown in the second column of Ta-
an accuracy of 0.82513 tested over 100,000 unbiased Ifls 5.
in a 149x298 lattice, thus better than the 0.824 of the GP The fitness function was slightly modified by introduc-
rule tested in a 149x320 lattice [14, 13]. The rule table dfig a ranking system, where individuals capable of cor-
this rule (GEPrule) is shown in Table 6. Figure 14 showsectly classifying between [2; 3] of the ICs received
three space-time diagrams for this new rule. one bonus equal @; if correctly classified between]3/4
As a comparison, the GP technique used populatio@s 17/20C] ICs received 2 bonus; and if correctly classi-
of 51,200 individuals and 1000 ICs for 51 generations [13fied more than 17/2Q ICs received 3 bonus. Also, in this
thus atotal of 51,200 x 1000 x 51 = 2,611,200,000 fitnegxperiment, individuals capable of correctly classifying only
evaluations were made, whereas GEP only made 30 x 26ne kind of situation, although not indiscriminately, were
50 = 37,500 fitness evaluations. Therefore GEP outpatifferentiated and had a fitnessiof

Table 6.
Description of the two new rules (GEP, and GEP,) discovered using gene expression programming for the density-classification
problem. The GP rule is also shown. The output bits are given in lexicographic order starting with 0000000 and finishing with
1111111,

GEP 00010001 00000000 01010101 00000000 00010001 00001111 01010101 00001111
1 00010001 11111111 01010101 11111111 00010001 11111111 01010101 11111111

GEP 00000000 01010101 00000000 01110111 00000000 01010101 00000000 01110111
2 00001111 01010101 00001111 01110121 11111111 01010101 11111111 01110111

GP rul 00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
Ul 01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

17

© Candida Ferreira

1204

140
160 1604

1804 1804

200 T T T T T T T
20 40 60 80 100 120 140

200 T T T T T T T
20 40 60 80 100 120 140

Figure 14. Three space-time diagrams describing the evolution of CA states for the GEP, rule. The number of 1's in the IC (p,) is shown
above each diagram. In @) and b) the CA correctly converged to a uniform pattern; in c) it converged wrongly to a uniform pattern.

By generation 43 of run 10, an individual evolved witrsolution for the 11-multiplexer is a well known Boolean

fitness 393: function, the solution of the GP rule is practically unknown,
as the program evolved by GP [13] is so complicated that

012345678901201234567890120123456789012 it is impossible to know what the program really does.

Mluual113b21cMIM3au3b2233bM1Mlacclcblaa In this section is shown how GEP can be efficiently

applied to evolve Boolean expressions of several argu-
Its rule table is shown in Table 6. Figure 15 shows threeents. Furthermore, the structural organisation of the chro-
space-time diagrams for this new rule (GERgain, in mosomes used to evolve solutions for the 11-multiplexer
this case the comparison with GP shows that GEP outpés-an example of a very simple organisation that can be

forms GP in 10,444 times. used to efficiently solve certain problems. For example,
this organisation (one-element genes linked by IF) was
6.5. Boolean concept learning successfully used to evolve CA rules for the density-clas-

sification problem, discovering better rules than the GKL
The GP rule and the 11-multiplexer are, respectivelyle (results not shown).
Boolean functions of seven and 11 activities. Whereas the

1004

1204

1404

1604

1804

200 T T T T T T T
20 40 60 80 100 120 140

Figure 15. Three space-time diagrams describing the evolution of CA states for the GEP, rule. The number of 1's in the IC (p,) is shown
above each diagram. In a) and b) the CA converges, respectively, to the correct configuration of all 0’s and all 1's; in ¢) the CA could not
converge to a uniform pattern.

18

© Candida Ferreira

6.5.1. The GP rule problem

For this problem F={N, A, O, X, D, R, I, M} (represent- 1600
ing, respectively: NOT, AND, OR, XOR, NAND, NOR,
IF, and Majority, being the first a function of one argu
ment, the second through fifth are functions of two argt 1400 e Bestind
ments, and the last two are functions of three argument
and T={c, b, a, u, 1, 2, 3}. The rule tablé{228 fitness 1200
cases) is shown in Table 6 and the fithess was evaluatec
equation 4.2. Thug, = 128.

Three different solutions were discovered in one e; g 1000
periment:

—e— Avg fitness

< 800
MA300AMOAUOMRalcc3cubcc2cullbaaach331ual22uul

X3RRMIMODIAIAAI3cauuc313bub2uc33cal2u233c22bch %
MMOIOcXOMa3AXAu3ccl12ucbb3331uac3cu3auubuuabl 600

The careful analysis of these programs shows that the ¢
rule is, like the GKL rule, a function of five arguments: ¢
a, u, 1, and 3.

400

200

6.5.2. The 11-multiplexer problem

The task of the 11-bit Boolean multiplexer is to decode a 0

binary address (000, 001, 010, 011, 100, 101, 110, 11
and return the value of the correspondent data regigter (u
d,d,d,d,d,d,d). Thus, the Boolean 11-multiplexer Figure 16. Progression of average fitness of the population and
is a function of 11 arguments: thregtcaaz, determinethe the fltne;s of the best individual for run 1 of the experiment sum-
. . marised in Table 2, column 4.
address, and eight, t d, determine the answer. As GEP
uses single character chromosomes, T ={a, b, c, 1, 2, 3, 4,
5, 6, 7, 8} which correspond, respectively, tg & a, d, chromosome characters; see K-expression 3.12 and Fig-
d,d,d,d,d,d,d} ure 5):
There are 2= 2048 possible combinations for the 11
arguments of the Boolean 11-multiplexer function. For this 3652bb5bbba4c87c43bcca62a51
problem a random sampling of the 2048 combinations was
used as the fitness cases for evaluating fithess. The fitnegdsch is a universal solution for the 11-multiplexer. Figure
cases were assembled by address, and for each addrels® shows the progression of average fitness of the popula-
sub-set of 20 random combinations was used each gendiaa and the fitness of the best individual for run 1 of the
tion. Therefore, a total of 160 random fitness cases weggperiment summarised in Table 2, column 4.
used each generation as the adaptation environment. InAs shown in the fourth column of Table 2, GEP solves
this case, the fitness of a program is the number of fitnetbe 11-multiplexer with a success rate of 0.57. It's worth
cases for which the Boolean value returned is correct, plnaticing that GP could not solve the 11-multiplexer with a
a bonus of 180 fitness points for each sub-set of combinaepulation size 500 for 51 generations [8], and could only
tions solved correctly as a whole. Therefore, a total of 2G@lve it using 4,000 individuals [6].
fithess points was attributed for each correctly decoded
address, being the maximum fitness 1600. The idea was/toConclusions
make the algorithm decode one address at a time. And, in
fact, the individuals learn to decode first one address, théhe details of implementation of GEP were thoroughly
another, until the last one (see Figure 16). explained allowing other researchers to implement this new
To solve this problem, multigenic chromosomes corralgorithm. Furthermore, the problems chosen to illustrate
posed of 27 genes were used, each gene consisting onlthef functioning of GEP show that the new paradigm can
one terminal. Thus, no functions were used to generdie used to solve several problems from different fields with
the chromosomes, although the sub-ETs wernhe advantage of running efficiently in a personal compu-
posttranslationally linked by IF. ter. The new concept behind the linear chromosomes and
The parameters used per run are shown in column 4tbé ETs enabled GEP to considerably outperform GP: more
Table 2. The first correct solution in this experiment wathan two orders of magnitude in symbolic regression, se-
found in generation 390 of run 1 (the characters are linkgdence induction, and block stacking, and more than four
3 by 3, forming an ET with depth 4, composed of 40 nodestders of magnitude in the density-classification problem.
being the first 14 nodes IFs, and the remaining nodes, thikerefore, GEP offers new possibilities to solve more com-

0 50 100 150 200 250 300 350 400
Generations

19

© Candida Ferreira

plex technological and scientific problems. Also important. C. K. Mathews, K. E. van Holde, and K. G. Ahern,
and original is the multigenic organisation of GEP chraBiochemistry, 3rd ed., Benjamin/Cummings, 2000.

mosomes, which makes GEP a truly hierarchical discog: y.-M. O’Reilly and F. Oppacher, A comparative analy-
ery technique. And finally, GEP algorithms represent nags of genetic programming. In P. J. Angeline and K. E.

ture more faithfully, therefore can be used as computRinnear, eds.Advances in Genetic Programmingh\2IT
models of natural evolutionary processes. Press, 1996.

9. M. Mitchell, P. T. Hraber, and J. P. Crutchfield, 1993.
Revisiting the edge of chaos: Evolving cellular automata

| am very grateful to José Simas for helping with hardwartg perform computation&omplex Systens 89-130.

problems, for reading and commenting the manuscript, akfl- M- Mitchell, J. P. Crutchfield, and P. T. Hraber, 1994.
for his enthusiasm and support while | was grasping tffe/0lving cellular automata to perform computations:
basic ideas and concepts of GEP. Mechanisms and impedimenBhysica D 75, 361-391.

11. J. P. Crutchfield, and M. Mitchell, 1995. The evolution
of emergent computatioRroceedings of the National
Academy of Sciences, USSR, 10742-10746.

1. M. Mitchell, An Introduction to Genetic Algorithms, 12. R. Das, M. Mitchell, and J. P. Crutchfield, 1994. A
MIT Press, 1996. genetic algorithm discovers particle-based computation in

2.J. Maynard Smith and E. Szathmary, The Major Trans.(i\-e,l,IUIar au'g)mata. IIInIY. D‘;\l”dor' HI"P' S]E:hwefel, and R.
tions in Evolution, W. H. Freeman, 1995, Manner, eds.Parallel Problem Solving from Nature -

. . _ . PPSN Ill.Springer-Verlag, 1994.
3. M. J. Keith and M. C. Martin, Genetic Programming in

C++: Implementation Issues. In K. E. Kinnear, e 13. J. R. Koza, F. H. Bennett Ill, D. Andre, and M. A.

vances in Genetic ProgrammindlIT Press, 1994. Keane, M. A.Genetic Progr'ammmg II: [?arW|n|an In-
) vention and Problem Solvingan Francisco: Morgan

4. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francong., fmann Publishers. 1999

Genetic Programming: An Introduction: On the Automatic il q ’ ”' K ving the “ideal’

Evolution of Computer Programs and its Application ,14', H'_‘]“' el" an J. B.hP(()j.ac : Coe\]{o Vllln? the “idea

Morgan Kaufmann, 1998. trainer: Application to the discovery of cellular automata

. . . . rules. InJ. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo,
5.D. E. Goldberg, Genetic Algorithms in Search, Optimipy g Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and

zation, and Machine Learning, Addison-Wesley, 1989. g | 'Riolo, eds.Genetic Programming 1998: Proceed-
6. J. R. Koza, Genetic Programming: On the Prograrnhgs of the Third Annual Conferenddorgan Kaufmann,
ming of Computers by Means of Natural Selection, Canan Francisco, CA, 1998.

bridge, MA: MIT Press, 1992.

Acknowledgements

References

20

