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Gene expression programming (GEP) uses mutation, trans-
position, and crossover to create variation. Although there
exists a large body of work in genetic algorithms con-
cerning the roles of mutation and recombination, these
results not only do not apply to GEP due to the genotype/
phenotype representation but also seem to contradict the
GEP experience. Therefore, and given the diversity of GEP
operators, it is convenient to develop some kind of un-
derstanding of their power. The aim of this work is to
help develop such an understanding and to show the evo-
lutionary dynamics and the transforming power of each
genetic operator, with their advantages and limitations.

Introduction

Everybody agrees that, by and large, evolution relies on
variation coupled with some kind of selection, and all evo-
lutionary algorithms explore these fundamental assets.
However, there is no agreement concerning the best way
to create variation. The first evolutionary algorithms re-
lied on mutation only and their recent developments claim
that recombination has no general advantage over muta-
tion (for a review see, e.g. [1]). In genetic algorithms
(GAs), however, recombination is considered the more
powerful of the two operators [5]. More recently, Spears
[6] tries to conciliate both views, attributing to mutation
and recombination equally important roles: the roles of
disrupters (mutation) and constructors (recombination).
To make matters worse, the classical genetic programming
approach (GP) stresses out the prominence of crossover
[4], whereas developmental genetic programming (DGP)
is more inclined towards mutation [2].

In this work I show that, in GEP, mutation is by far the
single most important operator whereas recombination has
a very limited power.

1. Search in genotype/phenotype systems

In genotype/phenotype systems, the search space remains
separated from the solution space, improving consider-
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ably the performance of these systems [2, 3]. Moreover, the
more unconstrained the genotype/phenotype mapping the
more efficient the system as virtually any operator can be
used to explore the search space, including mutation. In DGP,
however, the genotype/phenotype mapping does not always
result in syntactically correct phenotypes and much editing
is necessary to remove invalid phenotypes. Consequently,
mutation does not significantly outperform crossover.

On the other hand, GEP is a totally unconstrained
genotype/phenotype system as all modifications made in
the genotype always result in correct phenotypes and no
editing whatsoever is necessary [3]. Therefore, GEP pro-
vides, for the first time, an artificial framework where un-
constrained genotype/phenotype systems can be care-
fully analyzed and hopefully shed some light on the role
of mutation and crossover in evolution.

2. General settings

To make this preliminary analysis of GEP operators, the
following relatively simple test function was chosen:

                     y = a4 + a3 + a2 +a

as it can be exactly solved using relatively small
populations and relatively short evolutionary times and
also because it is appropriate to study all the genetic op-
erators, including operators specific of multigenic systems
like gene recombination.

In all the experiments, a set of 10 random fitness cases
chosen from the interval [-10, 10] was used (a values:
-4.4229, 9.7485, -1.7641, -7.0436, -6.8656, -8.1246,
5.9982, -0.1057, 5.1629, -0.7231); the fitness function
used is based on the absolute error and has a selection
range of 100 and a precision of 0.01, giving a maximum
fitness of 1000 [3]; the selection was made by roulette-
wheel sampling coupled with simple elitism; a popula-
tion size P of 50 individuals and an evolutionary time G
of 50 generations were used; the success rate Ps of each
experiment was evaluated over 100 independent runs;
F = {+, -, *, /} and T = {a}; and three-genic chromo-
somes of length 39 linked by addition were used. In the
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experiments where transposition was switched on, three
transposons with lengths 1, 2, and 3 were used. In the
evolutionary dynamics, only successful runs were cho-
sen and G was extended to 100 generations so that the
dynamics could be better perceived.

3. Comparing mutation, transposition,
and crossover

Due to the unconstrained genotype/phenotype mapping
of GEP, several genetic operators can be easily imple-
mented and Ferreira [3] uses seven: mutation, three kinds
of transposition (IS, RIS and gene transposition), and three
kinds of recombination (one-point, two-point and gene
recombination). Most of these operators are important
per se, and here they are going to be analyzed separately,
but one of them – gene transposition – is only significant
if used in conjunction with recombination and therefore
will not be analyzed here.

The performance of six GEP operators is shown in Fig-
ure 1, and it clearly shows that mutation is by far the single
most powerful operator, followed by RIS transposition and
IS transposition, whereas recombination is the less power-
ful operator with gene recombination at the end of the line.

4. Evolutionary dynamics

The analysis of the evolutionary dynamics of some of the
populations of Figure 1 can be helpful to gain some in-

sight into the adaptive strength of evolutionary systems.
Obviously, the most interesting populations have the high-
est success rates. However, it would also be most useful
to analyze the evolutionary dynamics of less efficient sys-
tems and compare them with the most efficient.

4.1. Mutation

The evolutionary dynamics of four populations evolving
under mutation are shown in Figure 2. In the first evolu-
tionary dynamics, p

m
 = 0.001, the plot for average fitness

closely accompanies the plot for the best fitness and, in
later generations, with the exception of a small variation,
the plots overlap. These populations are called Moder-
ately Innovative as they allow the introduction of a little
bit of genetic diversity among its members and evolve
very sluggishly.

In the second dynamics, p
m
 = 0.005, we observe that,

although closely accompanying the plot for best fitness,
the plot for average fitness never touches the best fitness.
Moreover, the oscillatory pattern on average fitness char-
acteristic of GEP populations [3], is already evident even
for such small variation rates. As shown in plot b of Figure
2, the success rate is in this case 47%. It can be said that,
although adaptively healthy, the system is not very effi-
cient. These systems are called Healthy But Weak. Note
that the success rate increases progressively with the muta-
tion rate until it reaches a plateau around p

m
 = 0.1 and, in

terms of dynamics, this is reflected in a more pronounced
oscillatory pattern in average fitness and an increase in the
gap between both plots. Indeed, around p

m
 = 0.1 (Figure 2,

Figure 1. The transforming power of mutation, transposition, and crossover.
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plot c), the system is at its best with a success rate of
100%. These populations are called Healthy And Strong.
Note that the gap between best and average fitness is
considerably wider than in plots a and b, and the capac-
ity to evolve is also higher. Obviously, all populations
evolving with maximum performance (approximately
from p

m
= 0.033 to p

m
= 0.20) have dynamics of the type

Healthy And Strong.
The last dynamics of Figure 2, p

m
 = 1.0, is an example

of Totally Chaotic systems. Note that, despite elitism, this
dynamics is completely chaotic, for elitism is insignificant
as each generation a totally random population is gener-
ated. Note also the less pronounced oscillatory pattern in
average fitness and that the gap between average and
best fitness is now maximal.

Figure 2. A gallery of evolutionary dynamics found in populations evolving by mutation. The success rate above each
plot was determined in the experiment shown in Figure 1. a) Moderately Innovative dynamics, p

m
 = 0.001. b) Healthy

But Weak dynamics, p
m
 = 0.005. c) Healthy And Strong dynamics, p

m
 = 0.1. d) Totally Chaotic dynamics, p

m
 = 1.0.

4.2. Transposition

As shown in Figure 1 and, against all expectations, RIS
transposition is more efficient than IS transposition. Re-
call that with RIS transposition the root itself is always
the target, modifying drastically the expression trees [3].
Note also that the transforming power of this kind of trans-
position is slightly less than mutation but superior to
crossover.

Figure 3 compares the evolutionary dynamics obtained
for small and high transposition rates. Note the appear-
ance of the type Healthy And Strong for p

ris
 = 1.0 (plot b)

and for p
is
 = 1.0 (plot d). The other plots were obtained

for p
ris

 = 0.1 (plot a) and p
is
 = 0.1 (plot c), and are of the

kind Healthy But Weak. In fact, and as observed for mu-

Figure 3. A gallery of evolutionary dynamics found in populations evolving by RIS (plots a and b) and IS transposi-
tion (plots c and d). The success rate above each plot was determined in the experiment shown in Figure 1. a) Healthy
But Weak dynamics, p

ris
 = 0.1. b) Healthy And Strong dynamics, p

ris
 = 1.0. c) Healthy But Weak dynamics, p

is
 = 0.1.

d) Healthy And Strong dynamics, p
is
 = 1.0.

a)                 Ps = 16% b)                 Ps = 47% c)                 Ps = 100% d)                 Ps = 39%

a)                 Ps = 24% b)                 Ps = 87% c)                 Ps = 21% d)                 Ps = 72%
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tation, an increase in transposition rate results in an in-
crease in the gap between best and average fitness.

4.3. Recombination

The performance of the three kinds of GEP recombination
is shown in Figure 1. It is worth emphasizing that 2-point
recombination is the most disruptive of the recombination
operators and, as shown in Figure 1, it is also the most effi-
cient kind of recombination. Not surprisingly, the most con-
servative gene recombination is also the less efficient.

The dynamics characteristic of recombination (Figure
4) also show an extremely important feature of recombi-
nation, that is, the homogenizing effect of all kinds of re-
combination, from the most conservative to the most dis-
ruptive. For obvious reasons, these recombination-specific
dynamics are called Homogenizing dynamics. Note that,
in all cases, after a certain time the plot for average fitness
overlaps the plot for best fitness. This indicates that the
populations lost all the diversity and all the individuals
have the same genetic makeup. Obviously, if populations
converge to this stage before finding a good solution, they
become irrevocably stuck in that point if no other, non-
recombinatorial operators are available. As the small suc-
cess rates obtained for recombination emphasize (Figure
1), when populations evolve by recombination only, most
of the times, they converge before finding a good solu-
tion. This tells us that recombination should never be used
as the only source of genetic variation.

Furthermore, it is worth noticing that GEP recombi-
nation, even the most conservative gene recombination,
is more disruptive than the homologous recombination that
occurs in nature during sexual reproduction as the ex-
changed genes rarely are homologous. One of the unsolved
questions of biology is the role of sex in evolution and,

Figure 4. A gallery of evolutionary dynamics found in populations evolving by 2-point recombination
(plot a), 1-point recombination (plot b), and gene recombination (plot c). The success rate above each
plot was determined in the experiment shown in Figure 1. In all the plots the evolutionary dynamics are of
the kind Homogenizing. a) p

2r
 = 1.0. b) p

1r
 = 1.0. c) p

gr
 = 1.0.

most of the times, biological sex in its overwhelming di-
versity is confounded with the homologous recombina-
tion that occurs during sexual reproduction. Consequently,
many erroneously assume that homologous recombina-
tion creates great diversity. The comparison of GEP op-
erators, especially GEP recombination operators, suggests
that a more conservative recombination like homologous
recombination would only be useful to maintain the sta-
tus quo in periods of stasis.
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