GEP Book

  Home
  News
  Author
  Q&A
  Tutorials
  Downloads
  GEP Biblio
  Contacts

  Visit Gepsoft

 

C. FERREIRA In A. Abraham, J. Ruiz-del-Solar, and M. Köppen (eds), Soft Computing Systems: Design, Management and Applications, pp. 153-162, IOS Press, Netherlands, 2002.

Analyzing the Founder Effect in Simulated Evolutionary Processes Using Gene Expression Programming

Abstract
 
Gene expression programming is a genotype/phenotype system that evolves computer programs encoded in linear chromosomes of fixed length. The interplay between genotype (chromosomes) and phenotype (expression trees) is made possible by the structural and functional organization of the linear chromosomes. This organization allows the unconstrained operation of important genetic operators such as mutation, transposition, and recombination. Although simple, the genotype/phenotype system of gene expression programming can provide some insights into natural evolutionary processes. In this work the question of the initial diversity in evolving populations of computer programs is addressed by analyzing populations undergoing either mutation or recombination. The results presented here show that populations undergoing mutation recover practically undisturbed from evolutionary bottlenecks whereas populations undergoing recombination alone depend considerably on the size of the founder population and are unable to evolve efficiently if subjected to really tight bottlenecks.

Home | Contents | Next