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An artificial neural network with all its elements is a rather complex structure, not easily constructed and/
or trained to perform a particular task. Consequently, several researchers used Genetic Algorithms to
evolve partial aspects of neural networks, such as the weights, the thresholds, and the network architec-
ture. Indeed, over the last decade many systems have been developed that perform total network induc-
tion. In this work it is shown how the chromosomes of Gene Expression Programming can be modified
so that a complete neural network, including the architecture, the weights and thresholds, could be totally
encoded in a linear chromosome. It is also shown how this chromosomal organization allows the training/
adaptation of the network using the evolutionary mechanisms of selection and modification, thus provid-
ing an approach to the automatic design of neural networks. The workings and performance of this new
algorithm are tested on the 6-multiplexer and on the classical exclusive-or problems.

1. Introduction

An artificial neural network is a computational device that
consists of many simple connected units (neurons) that work
in parallel. The connections between the units or nodes are
weighted usually by real-valued weights. Weights are the
primary means of learning in neural networks, and a learn-
ing algorithm is used to adjust the weights (e.g., Anderson
1995).

More specifically, a neural network has three different
classes of units: input, hidden, and output units. An activa-
tion pattern is presented on its input units and spreads in a
forward direction from the input units through one or more
layers of hidden units to the output units. The activation com-
ing into a unit from other units is multiplied by the weights
on the links over which it spreads. All incoming activation is
then added together and the unit becomes activated only if
the incoming result is above the unit’s threshold.

In summary, the basic elements of a neural network are
the units, the connections between units, the weights, and
the thresholds. And these are the elements that must be en-
coded in a linear chromosome so that populations of such
structures can adapt in a particular selection environment in
order to evolve solutions to different problems.

Over the last decade many systems have been developed
that evolve both the topology and the parametric values of a
neural network (Angeline et al. 1993; Braun and Weisbrod

1993; Dasgupta and McGregor 1992; Gruau et al. 1996; Koza
and Rice 1991; Lee and Kim 1996; Mandischer 1993;
Maniezzo 1994; Opitz and Shavlik 1997; Pujol and Poli
1998; Yao and Liu 1996; Zhang and Muhlenbein 1993). The
present work introduces a new algorithm, GEP-NN, based
on Gene Expression Programming (GEP) (Ferreira 2001) that
performs total network induction using linear chromosomes
of fixed length (the genotype) that map into complex neural
networks of different sizes and shapes (the phenotype). The
problems chosen to show the workings of this new algo-
rithm include two problems of logic synthesis: the exclusive-
or and the 6-multiplexer.

2. Genes with multiple domains for designing
neural networks

The total induction of neural networks (NN) using GEP, re-
quires further modification of the structural organization
developed to manipulate numerical constants (Ferreira 2001,
2003). The network architecture is encoded in the familiar struc-
ture of head and tail. The head contains special functions that
activate the units and terminals that represent the input units.
The tail contains obviously only terminals. Besides the head
and the tail, these genes (neural net genes or NN-genes) con-
tain two additional domains, Dw and Dt, encoding, respec-
tively, the weights and the thresholds. Structurally, the Dw
comes after the tail and has a length dw equal to the head

9th Online World Conference on Soft Computing in Industrial Applications, September 20 - October 8, 2004



2

length h multiplied by maximum arity n, and Dt has a length
d

t
 equal to h. Both domains are composed of symbols repre-

senting the weights or thresholds of the neural net.
For each NN-gene, the weights and thresholds are cre-

ated at the beginning of each run, but their circulation is
guaranteed by the usual genetic operators of mutation, trans-
position, and recombination. Nonetheless, a special muta-
tion operator was created that allows the permanent intro-
duction of variation in the set of weights and thresholds.

It is worth emphasizing that the basic genetic operators
like mutation or transposition are not affected by Dw and Dt
as long as the boundaries of each region are maintained and
the alphabets of each domain are not mixed up.

Consider the conventionally represented neural network
with two input units (i

1
 and i

2
), two hidden units (h

1
 and h

2
),

and one output unit (o
1
) (for simplicity, the thresholds are all

equal to 1 and are omitted):

It can also be represented as a tree:

where a and b represent, respectively, the inputs i
1
 and i

2
 to

the network and “D” represents a function with connectiv-
ity two. This function multiplies the value of each argument
by its respective weight and adds all the incoming activation
in order to determine the forwarded output. This output (0 or
1) depends on the threshold which, for simplicity, was set to 1.

We could linearize the above NN-tree as follows:

0123456789012
DDDabab654321

which consists of an NN-gene with the familiar head and tail
domains, plus an additional domain Dw for encoding the
weights. The values of each weight are kept in an array and
are retrieved as necessary. For simplicity, the number repre-
sented by the numeral in Dw indicates the order in the array.

Let us now analyze a simple neural network encoding a
well-known function, the exclusive-or. Consider, for instance,
the chromosome below with h = 3 and containing a domain
encoding the weights:

0123456789012
DDDabab393257

Its translation gives:

For the set of weights:

W =  {-1.978, 0.514, -0.465, 1.22, -1.686, -1.797, 0.197,
            1.606, 0, 1.753},

the neural network above gives:

                  (2.1)

which is a perfect solution to the exclusive-or problem.

3. Special genetic operators

The evolution of such complex entities composed of differ-
ent domains and different alphabets requires a special set of
genetic operators so that each domain remains intact. The
operators of the basic gene expression algorithm (Ferreira
2001) are easily transposed to neural-net encoding chromo-
somes, and all of them can be used as long as the boundaries
of each domain are maintained and alphabets are not mixed
up. Mutation was extended to all the domains and continues
to be the most important genetic operator. IS and RIS trans-
position were also implemented in GEP-nets and their ac-
tion is obviously restricted to heads and tails. However, a
special insertion operator was created that operates within
Dw and Dt, ensuring the efficient circulation of weights and
thresholds in the population (see section 3.1). Another spe-
cial operator, weights and thresholds’ mutation, was also
created in order to directly introduce variation in the set of
available weights and thresholds (see section 3.3).

The extension of recombination and gene transposition
to GEP-nets is straightforward as their actions never result
in mixed domains or alphabets. However, for them to work
efficiently (i.e., allow an efficient learning), we must be care-
ful in determining which weights and/or thresholds go to
which region after the splitting of the chromosomes, other-
wise the system is incapable of evolving efficiently. In the
case of gene recombination and gene transposition, keeping
track of a gene’s weights and thresholds is no difficult task,
and these operators work very well in GEP-nets. But in one-
point and two-point recombination where chromosomes can
be split anywhere, it is impossible to keep track of the weights
and thresholds. In fact, if applied straightforwardly, these
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operators would produce such evolutionary monsters that
they would be of little use in multigenic chromosomes. There-
fore, for multigenic systems, a special intragenic two-point
recombination was created so that the recombination is re-
stricted to a particular gene (see section 3.2).

3.1. Domain-specific transposition

Domain-specific transposition is restricted to the NN-spe-
cific domains, Dw and Dt. Its mechanism is, however, simi-
lar to IS transposition (Ferreira 2001). This operator ran-
domly chooses the chromosome, the gene with its respec-
tive Dw plus Dt (if we use the same symbols to represent
the weights and the thresholds, we can treat Dw and Dt as
one big domain), the first position of the transposon, the
transposon length, and the target site (also chosen within
Dw plus Dt).

Consider the chromosome below with h = 4 (Dw and Dt
are shown in different shades):

0123456789012345678901234567890123456
DTQaababaabbaabba05717457362846682867

(3.1)

where “T” represents a function of three arguments and “Q”
represents a function of four arguments. Suppose that the
sequence “46682” was chosen as a transposon and that the
insertion site was bond 4 in Dw (between positions 20 and
21). Then the following chromosome is obtained:

0123456789012345678901234567890123456
DTQaababaabbaabba05714668274573628466

(3.2)

Note that the transposon might be any sequence in Dw
or Dt, or even be part Dw and part Dt like in the example

above. Note also that the insertion site might be anywhere in
Dw or Dt as the symbols used to represent the weights and
the thresholds are the same. Remember, however, that the
values they represent are different for they are kept in differ-
ent arrays. Suppose that the arrays below represent the
weights and the thresholds of chromosome (3.1) above:

W = {-1.64, -1.834, -0.295, 1.205, -0.807, 0.856, 1.702,
        -1.026, -0.417, -1.061}
T = {-1.14, 1.177, -1.179, -0.74, 0.393, 1.135, -0.625,
       1.643, -0.029, -1.639}

Although the new chromosome (3.2) obtained after transpo-
sition has the same topology and uses exactly the same arrays
for its expression, a different neural network is encoded in
this chromosome (Figure 1). Indeed, with domain-specific
transposition the weights and thresholds are moved around
and new combinations are tested.

3.2. Intragenic two-point recombination

Intragenic two-point recombination was created in order to
allow the modification of a particular gene without interfer-
ing with the other sub-neural nets encoded in other genes.
The mechanism of this kind of recombination is exactly the
same as in two-point recombination, with the difference that
the recombination points are chosen within a particular gene
(see Figure 2).

Consider the following parent chromosomes composed
of two genes, each with a weights domain (Wi,j represents
the weights of gene j in chromosome i):

W0,1 = {-0.78, -0.521, -1.224, 1.891, 0.554, 1.237, -0.444,
            0.472, 1.012, 0.679}
W0,2 = {-1.553, 1.425, -1.606, -0.487, 1.255, -0.253,
            -1.91, 1.427, -0.103, -1.625}

Figure 1. Testing new combinations of existing weights and thresholds by domain-specific transposition. a) The mother neural
network. b) The daughter neural network created by domain-specific transposition. Note that the network architecture is the
same for both mother and daughter and that Wm = Wd and Tm = Td. However, mother and daughter are different because
different combinations of weights and thresholds are expressed in these individuals.

01234567890123456 3456
DTQaababaabbaabba 2867

7890123456789012
0571745736284668

W  = {-1.64, -1.834, -0.295, 1.205, -0.807, 0.856, 1.702,
            -1.026, -0.417, -1.061}
T  = {-1.14, 1.177, -1.179, -0.74, 0.393, 1.135, -0.625,
          1.643, -0.029, -1.639} 
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0123456789012345601234567890123456
TTababaab14393255QDbabbabb96369304-[0]
Qaabbbabb97872192QDbabbaaa81327963-[1]

W1,1 = {-0.148, 1.83, -0.503, -1.786, 0.313, -0.302, 0.768,
            -0.947, 1.487, 0.075}
W1,2 = {-0.256, -0.026, 1.874, 1.488, -0.8, -0.804, 0.039,
            -0.957, 0.462, 1.677}

Suppose that the first gene was chosen to recombine and
point 1 (between positions 0 and 1) and point 12 (between
positions 11 and 12) were chosen as recombination points.
Then the following offspring is formed:

0123456789012345601234567890123456
Taabbbabb97893255QDbabbabb96369304-[0]
QTababaab14372192QDbabbaaa81327963-[1]

with weights encoded in exactly the same arrays as the par-
ents. However, due to recombination, the weights expressed
in the parents are different from those expressed in the off-
spring (compare their expressions in Figure 2).

It is worth emphasizing that this gene-restricted two-point

recombination allows a greater control of the recombination
effects and, consequently, permits a finer tuning of evolu-
tion. If we were to use one-point and two-point recombina-
tion as used in the basic gene expression algorithm, i.e., dis-
rupting chromosomes anywhere, the fine adjustment of the
weights would be an almost impossible task. Restricting two-
point recombination to only one gene, however, ensures that
only this gene is modified and, consequently, the weights
and thresholds of the remaining genes are kept in place.

Remember, however, that intragenic two-point recombi-
nation is not the only source of recombination in multigenic
neural nets: gene recombination is fully operational in these
systems and it can be combined with gene transposition to
propel evolution further. And in unigenic systems, the stand-
ard one-point and two-point recombination are also fully
operational as only one gene is involved.

3.3. Direct mutation of weights and thresholds

In the previous sub-sections it was shown that all genetic
operators contribute directly or indirectly to move the weights
and thresholds around. And, in fact, this constant shuffling

Figure 2. Intragenic two-point recombination in multigenic chromosomes encoding neural networks. a) An event of intragenic two-point
recombination between two parent chromosomes resulting in two new daughter chromosomes. Note that the set of weights is not
modified by recombination. b) The sub-NNs codified by the parent chromosomes. c) The sub-NNs codified by the daughter chromo-
somes. Note that the sub-NNs encoded in the second gene are not modified. “L” represents a generic linking function.
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of weights and thresholds is more than sufficient to allow an
efficient evolution of GEP-nets as long as an appropriate
number of weights and thresholds is randomly created at the
beginning of each run. However, special mutation operators
that replace the value of a particular weight or threshold by
another can also be easily implement (see Figure 3).

This operator randomly selects particular targets in the
arrays in which the weights or thresholds are kept, and ran-
domly generates a new real-valued number. Consider for in-
stance the array:

Wi,j = {-0.433, -1.823, 1.255, 0.028, -1.755, -0.036,
             -0.128, -1.163, 1.806, 0.083}

encoding the weights of gene j on chromosome i. Suppose a
mutation occurred at position 7, changing the weight -1.163
occupying that position into -0.494, obtaining:

Wi,j = {-0.433, -1.823, 1.255, 0.028, -1.755, -0.036,
             -0.128, -0.494, 1.806, 0.083}

The consequences of this kind of mutation are very di-
verse: they might be neutral in effect (for instance, when the

gene itself is neutral or when the weight/threshold has no
expression on the sub-neural net) or they might have mani-
fold effects (for instance, if the weight/threshold modified
happened to be used more than once in the expression of the
sub-NN as shown in Figure 3).

Interestingly, this kind of mutation seems to have a very
limited importance and better results are obtained when this
operator is switched off. Indeed, the direct mutation of nu-
merical constants in function finding problems produces iden-
tical results (Ferreira 2003). Therefore, we can conclude that
a well dimensioned initial diversity of constants, be they
numerical constants of a mathematical expression or weights/
thresholds of a neural net, is more than sufficient to allow
their evolutionary tuning. In all the problems presented in
this work, a set of 10 weights W = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
was used.

4. Solving problems with neural networks de-
signed by gene expression programming

The problems chosen to illustrate the evolution of linearly
encoded neural networks are two well-known problems of
logic synthesis. The first, the exclusive-or problem, was cho-
sen both for its historical importance in the neural network
field and for its simplicity, allowing an easy understanding
of the evolved neural net. The second, the 6-bit multiplexer,
is a rather complex problem and can be useful for evaluating
the efficiency of this new algorithm.

4.1. Neural network for the exclusive-or problem

The XOR is a simple Boolean function of two activities and,
therefore, can be easily solved using linearly encoded neu-
ral networks. Its rule table is shown in Table 1.

The functions used to solve this problem have
connectivities 2, 3, and 4, and are represented, respectively,
by “D”, “T”, and “Q”, thus the function set F = {D, T, Q}; the
terminal set T = {a, b}; and the set of weights W = {0, 1, 2,
3, 4, 5, 6, 7, 8, 9} with values randomly chosen from the
interval [-2, 2]. For the experiment summarized in the first
column of Table 2, an h = 4 was chosen and, therefore, hun-
dreds of different correct solutions to the XOR function were
found. Most of them are more complicated than the conven-
tional solution (2.1) shown above which uses seven nodes;
others have the same degree of complexity evaluated in terms
of total nodes; but surprisingly others are more parsimoni-
ous than the mentioned conventional solution for the XOR
function as will next be shown.

The first solution found in run 0 of the experiment sum-
marized in the first column of Table 2 is shown below:Figure 3. Illustration of direct mutation of weights. a) The mother

and daughter chromosomes with their respective weights. In this
case, weights at positions 0 and 2 were mutated. Note that the
mother and daughter chromosomes are equal. b) The mother and
daughter neural nets encoded in the chromosomes. Note that the
point mutation at position 2 (-0.17) has manifold effects as this
weight appears four times in the neural network. Note also that
the mutation at position 0 is an example of a neutral mutation as it
has no expression on the neural net (indeed, mutations at posi-
tions 4, 6, and 9 would also be neutral).
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Figure 4. A perfect, slightly complicated solution to the exclusive-
or problem evolved with GEP neural networks. a) Its chromosome
and respective weights. b) The fully expressed neural network
encoded in the chromosome.

012345678901234567890123456789012
TQaTaaababbbabaaa6085977238275036
W = {1.175, 0.315, -0.738, 1.694, -1.215, 1.956, 
          -0.342, 1.088, -1.694, 1.288} 
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the XOR function was found in another experiment. The pa-
rameters used per run in this experiment are summarized on
the second column of Table 2. Note that the compact organi-
zation with h = 2 was chosen in order to search for solutions
more parsimonious than the canonical solution to the XOR
function. One such solution is shown below:

01234567890123456
TDbabaabb88399837

W = {0.713, -0.774, -0.221, 0.773, -0.789, 1.792, -1.77,
          0.443, -1.924, 1.161}

which is a perfect, extremely parsimonious solution to the
XOR problem. Its full expression is shown in Figure 5. In-
deed, several perfect solutions with this kind of structure
were found in this experiment.

Table 2
Parameters for the exclusive-or problem.

012345678901234567890123456789012
TQaTaaababbbabaaa6085977238275036

W = {1.175, 0.315, -0.738, 1.694, -1.215, 1.956, -0.342,
          1.088, -1.694, 1.288}

Its expression is shown in Figure 4. It is a rather complicated
solution to the XOR function, but remember that evolution-
ary algorithms thrive in slightly redundant architectures
(Ferreira 2002) and, as shown in Table 2, the success rate for
this problem using this non-compact chromosomal organi-
zation is higher (77%) than the obtained with more compact
organizations with h = 2 (30%).

However, GEP can be useful to search for parsimonious
solutions, and a very interesting parsimonious solution to

Figure 5. A perfect, extremely parsimonious solution to the exclu-
sive-or problem discovered with GEP designed neural networks.
a) Its chromosome and corresponding array of weights. b) The
fully expressed neural network encoded in the chromosome.

01234567890123456
TDbabaabb88399837
W = {0.713, -0.774, -0.221, 0.773, -0.789, 1.792, -1.77,
          0.443, -1.924, 1.161}
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Redundant System Compact System
Number of runs 100 100
Number of generations 50 50
Population size 30 30
Number of fitness cases 4 4
Function set D T Q D T Q
Terminal set a b a b
Weights array length 10 10
Weights range [-2, 2] [-2, 2]
Head length 4 2
Number of genes 1 1
Chromosome length 33 17
Mutation rate 0.061 0.118
One-point recombination rate 0.7 0.7
IS transposition rate 0.1 --
IS elements length 1 --
RIS transposition rate 0.1 --
RIS elements length 1 --
Dw-specific transposition rate 0.1 0.1
Dw-specific IS elements length 2,3,5 2,3,5
Success rate 77% 30%
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as we have to choose some kind of linking function (Ferreira
2001) to link the sub-neural nets encoded by each gene. For
this problem, the Boolean function OR was chosen to link
the sub-NNs. (If the mixing of OR with “U”, “D”, and “T”
functions is confusing, think of OR as a function with con-
nectivity two with a threshold and weights all equal to 1,
and you have a neural net for the OR function.)

In the experiment summarized in the second column of
Table 4, four genes posttranslationally linked by OR were
used. The first solution found in this experiment is shown in
Figure 7. Note that some weights in genes 1 and 2 have
identical values, and that the same happens for genes 3 and
4. This most probably means that these genes share a com-
mon ancestor.

5. Conclusions

The new algorithm presented in this work allows the com-
plete induction of neural networks encoded in linear chro-
mosomes of fixed length (the genotype) which, nonetheless,
allow the evolution of neural networks of different sizes and
shapes (the phenotype). Both the chromosomal organiza-
tion and the genetic operators especially developed to evolve
neural networks allow an unconstrained search throughout
the solution space as any modification made in the geno-
type always results in valid phenotypes. Furthermore, as
shown for the 6-multiplexer problem presented in this work,
the multigenic nature of GEP-nets can be further explored to
evolve complex neural networks with multiple outputs.

00000000 11111111 00001111 00001111
00110011 00110011 01010101 01010101

Table 4
Parameters for the 6-multiplexer problem.

Table 3
Lookup table for the 6-multiplexer. The output bits are given
in lexicographic order starting with 000000 and finishing
with 111111.

4.2. Neural network for the 6-multiplexer

The 6-bit multiplexer is a complex Boolean function of six
activities. Its rule table is shown in Table 3.

In order to simplify the analysis, a rather compact chro-
mosomal organization was chosen and the “Q” function was
not included in the function set. Thus, for this problem, F =
{3U, 3D, 3T}, where “U” represents a function with connec-
tivity one; T = {a, b, c, d, e, f}, representing the six arguments
to the 6-multiplexer function; and W = {0, 1, 2, 3, 4, 5, 6, 7, 8,
9}, each taking values from the interval [-2, 2].

For the experiment summarized in the first column of
Table 4, single-gene chromosomes were chosen so that the
simulation of the 6-multiplexer function, a four modular func-
tion, went totally unbiased. One of the most parsimonious
solutions designed is shown in Figure 6.

Obviously, we could explore the multigenic nature of GEP
chromosomes and evolve multigenic neural networks. The
solutions found are, however, structurally more constrained

Unigenic System Multigenic System
Number of runs 100 100
Number of generations 2000 2000
Population size 50 50
Number of fitness cases 64 (Table 3) 64 (Table 3)
Function set 3U 3D 3T 3U 3D 3T
Terminal set a b c d d e f a b c d d e f
Linking function -- O
Weights array length 10 10
Weights range [-2, 2] [-2, 2]
Head length 17 5
Number of genes 1 4
Chromosome length 103 124
Mutation rate 0.044 0.044
Intragenic two-point recombination rate 0.6 0.6
Gene recombination rate -- 0.1
Gene transposition rate -- 0.1
IS transposition rate 0.1 0.1
IS elements length 1,2,3 1,2,3
RIS transposition rate 0.1 0.1
RIS elements length 1,2,3 1,2,3
Weights mutation rate 0.002 0.002
Dw-specific transposition rate 0.1 0.1
Dw-specific IS elements length 2,3,5 2,3,5
Success rate 4% 6%
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Figure 7. A perfect solution to the 6-multiplexer problem encoded in a four-genic chromosome. a) Its chromo-
some with each gene shown separately. W

1
-W

4
 are the arrays containing the weights of each gene. b) The sub-

neural networks codified by each gene. In this perfect solution, the sub-neural nets are linked by OR.

Figure 6. A perfect solution to the 6-multiplexer function discovered with GEP designed neural networks. a) Its chro-
mosome and corresponding array of weights. b) The fully expressed neural network encoded in the chromosome.
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W = {0.241, 1.432, 1.705, -1.95, 1.19, 1.344, 0.925, -0.163, -1.531, 1.423}  
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