
1

©
 C

ân
di

da
 F

er
re

ira

Gene expression programming (GEP) is, like genetic al-
gorithms (GAs) and genetic programming (GP), a genetic
algorithm as it uses populations of individuals, selects them
according to fitness, and introduces genetic variation us-
ing one or more genetic operators [1]. The fundamental
difference between the three algorithms reside in the na-
ture of the individuals: in GAs the individuals are linear
strings of fixed length (chromosomes); in GP the individu-
als are non-linear entities of different sizes and shapes (parse
trees); and in GEP the individuals are encoded as linear
strings of fixed length (the genome or chromosomes) which
are afterwards expressed as non-linear entities of different
sizes and shapes (simple diagram representations or ex-
pression trees).

If we have in mind the history of life on Earth [2], we
can see that the difference between GAs and GP is only
superficial: both systems use only one kind of entity which
functions both as genome and body (phenome). These kind
of systems are condemned to have one of two limitations:
if they are easy to genetically manipulate, they lose in func-
tional complexity (the case of GAs); if they exhibit a cer-
tain amount of functional complexity, they are extremely
difficult to reproduce with modification (the case of GP).

GAs, with their simple genome and limited structural
and functional diversity, resemble a primitive RNA World
[2], whereas GP, with its structural and functional diver-

Gene Expression Programming: a New Adaptive

Algorithm for Solving Problems

Cândida Ferreira
1. candidaf@gene-expression-programming.com
2. http://www.gene-expression-programming.com

3. Departamento de Ciências Agrárias, Universidade dos Açores, Terra Chã, 9701-851,
Angra do Heroísmo, Portugal

Gene expression programming, a genome/phenome genetic algorithm (linear and non-linear), is pre-
sented here for the first time as a new technique for creation of computer programs. Gene expression
programming uses character linear chromosomes composed of genes structurally organised in a head
and a tail. The chromosomes function as a genome and are subjected to modification by means of
mutation, transposition, root transposition, gene transposition, gene recombination, 1-point and 2-
point recombination. The chromosomes encode expression trees which are the object of selection. The
creation of these separate entities (genome and expression tree) with distinct functions allows the
algorithm to perform with high efficiency: in the symbolic regression, sequence induction and block
stacking problems it surpasses genetic programming in more than two orders of magnitude, whereas
in the density-classification problem it surpasses genetic programming in more than four orders of
magnitude. The suite of problems chosen to illustrate the power and versatility of gene expression
programming includes, besides the above mentioned problems, two problems of Boolean concept
learning: the 11-multiplexer and the GP rule problem.

sity, resembles an hypothetical Protein World. Only when
molecules capable of replication joined molecules with
catalytic activity, forming an indivisible whole, was it pos-
sible to create more complex systems and, ultimately, the
first cell. Since then, the genome and phenome mutually
presume one another and neither can function without the
other. Similarly, the chromosomes and expression trees of
GEP mutually presume one another and neither exists with-
out the other.

The advantages of a system like GEP are clear from
nature, but the most important should be emphasised: First,
the chromosomes are simple entities: linear, compact, rela-
tively small, easy to genetically manipulate (replicate, mu-
tate, recombine, transpose, etc.). Second, the expression
tress (ETs) are exclusively the expression of the respective
chromosomes; they are the entities upon which selection
acts and, according to fitness, they are selected to repro-
duce with modification. During reproduction it is their
chromosomes, not the ETs, which are reproduced with
modification and transmitted to the next generation.

The interplay of chromosomes and ETs implies a uni-
versal translation system to translate the language of chro-
mosomes into the language of ETs. The structural organi-
sation of GEP chromosomes presented in this work al-
lows such an interplay, as any modification made in the
genome results always in syntactically correct ETs or pro-
grams. The varied set of genetic operators developed to
introduce genetic diversity in GEP populations always pro-

1. Introduction

2

©
 C

ân
di

da
 F

er
re

ira

Figure 1. The flowchart of a gene expression algorithm.

duce valid ETs. Thus, GEP is a very simple, life-like com-
plex system capable of adaptation and evolution.

On account of these characteristics, GEP is extremely
versatile and greatly surpasses the existing evolutionary
techniques. Indeed, in the most complex problem presented
in this work, the evolution of cellular automata rules for
the density-classification task, GEP surpasses GP in more
than four orders of magnitude.

In the present work I show the structural and func-
tional organisation of GEP chromosomes; how the lan-
guage of the chromosomes is translated to the language of
the ETs; how the chromosomes function as genotype and
the ETs as phenotype; and how an individual program is
created, matured, and reproduced, leaving offspring with
new properties, thus, capable of adaptation. The paper
proceeds with a detailed description of GEP and the illus-
tration of this technique with six examples chosen from
different fields, comparing the performance of GEP with
GP.

The flowchart of a gene expression algorithm (GEA) is
shown in Figure 1. The process begins with the random
generation of the chromosomes of each individual of the
initial population. Then the chromosomes are expressed
and the fitness of each individual is evaluated. The indi-
viduals are then selected according to fitness to reproduce
with modification, leaving progeny with new traits. The
individuals of this new generation are, in their turn, sub-
jected to the same developmental process: expression of
the genomes, confrontation of the selection environment,
and reproduction with modification. The process is repeated
for a certain number of generations or until a solution has
been found.

Note that reproduction includes not only replication
but also the action of genetic operators capable of creating
genetic diversity. During replication, the genome is rigor-
ously copied and transmitted to the next generation. Obvi-
ously, replication alone can not introduce variation: only
with the action of the remaining operators is the genetic
variation introduced in the population. These operators
randomly select the chromosomes to be modified. Thus, in
GEP, a chromosome might be modified by one or several
operators at a time or not be modified at all. The details of
the implementation of GEP operators are shown in sec-
tion 5.

In GEP, the genome or chromosome consists of a linear,
symbolic string of fixed length composed of one or more
genes. We will see that despite their fixed length, GEP chro-
mosomes code for ETs with different sizes and shapes.

3.1. Open reading frames and genes

The structural organisation of GEP genes is better under-
stood in terms of open reading frames (ORFs). In biology,
an ORF, or coding sequence of a gene, begins with the

2. Gene expression algorithms: an overview

3. The genome of GEP individuals

C re ate C hrom osso m es o f In itia l P opu la tion

E n d

E xpress C hrom ossom es

E xecu te E ach P ro g ram

E va lua te F itness

R ep lica tion

P repare N ew P rogram s o f N e xt G enera tion

K e ep B est P rog ram

S e lec t P ro g ram s

M uta tion

IS tran spositio n

R IS tran spositio n

G ene Transposition

1 -P o in t R ecom b ina tion

2 -P o in t R ecom b ina tion

G ene R ecom b ina tion

Ite ra te o r Te rm ina te?

Term ina te

Ite ra te

R
eproduction

‘start’ codon, continues with the amino acid codons, and
ends at a termination codon. However, a gene is more than
the respective ORF, with sequences upstream the start
codon and sequences downstream the stop codon. Al-
though in GEP the start site is always the first position of a
gene, the termination point not always coincides with the
last position of a gene. It is common for GEP genes to

3

©
 C

ân
di

da
 F

er
re

ira

have non-coding regions downstream the termination point.
(For now we will not consider these non-coding regions,
because they do not interfere with the product of expres-
sion.)

Consider, for example, the algebraic expression:

(3.1)

It can also be represented as a diagram or ET:

where ‘Q’ represents the square root function. This kind
of diagram representations are in fact the phenotype of
GEP individuals, being the genotype easily inferred from
the phenotype as follows:

01234567
Q*+-abcd (3.2)

which is the straightforward reading of the ET from left to
right and from top to bottom. The expression 3.2 is an
ORF, starting at ‘Q’ (position 0) and terminating at ‘d’
(position 7). These ORFs were named K-expressions (from
KARVA language). Note that this ordering differs from
both the postfix and prefix expressions used in different
GP implementations with arrays or stacks [3].

The inverse process, i.e. the translation of a K-expres-
sion into an ET, is also very simple. Consider another ORF,
the following K-expression:

01234567890
Q*+*a*Qaaba (3.3)

The start position (position 0) in the ORF corresponds to
the root of the ET. Then, bellow each function are attached
as many branches as there are arguments to that function.
The assemblage is complete when a base line composed
only of terminals (the variables or constants used in a prob-
lem) is formed. In this case, the following ET is formed:

dcba −×+

Q

*

+

a b c d

–

Q

Q

*

a a

a ab

Looking at the structure of GEP ORFs only, it is diffi-
cult or even impossible to see the advantages of such a
representation, except perhaps for its simplicity and el-
egance. However, when ORFs are analyzed in the context
of a gene, the advantages of such representation become
obvious. As I said, GEP chromosomes have fixed length,
and they are composed of one or more genes of equal
length. Therefore the length of a gene is also fixed. Thus,
in GEP, what varies is not the length of genes which is
constant, but the length of the ORFs. Indeed, the length of
an ORF may be equal or less than the length of the gene.
In the first case, the termination point coincides with the
end of the gene, and in the last case, the termination point
is somewhere upstream the end of the gene.

So, what is the function of these non-coding regions in
GEP genes? In fact, they are the essence of GEP and
evolvability, for they allow the modification of the genome
using any genetic operator without restrictions, producing
always syntactically correct programs without the need for
a complicated editing process or highly constrained ways
of implementing genetic operators. Indeed, this is the para-
mount difference between GEP and previous GP imple-
mentations, with or without linear genomes (for a review
on GP with linear genomes see [4]).

3.2. GEP genes

GEP genes are composed of a head and a tail. The head
contains symbols that represent both functions and termi-
nals, whereas the tail contains only terminals. For each
problem, the length of the head, h, is chosen, whereas the
length of the tail, t, is a function of h and the number of
arguments of the function with more arguments, n, and is
evaluated by the equation:

(3.4)

Consider a gene composed of {Q, *, /, -, +, a, b}. In
this case n = 2. For instance, for an h = 10, t = 11, and the
length of the gene is 10+11=21. One such gene is shown
bellow (the tail is shown in bold):

012345678901234567890
+Q-/b*aaQb aabaabbaaab (3.5)

It codes for the following ET:

In this case, the ORF ends at position 10, whereas the gene
ends at position 20.

11 +−⋅= nht

b

Q

*b

a Q

a

a

4

©
 C

ân
di

da
 F

er
re

ira

Suppose now a mutation occurred at position 9, chang-
ing the ‘b’ into ‘+’. Then the following gene is obtained:

012345678901234567890
+Q-/b*aaQ+ aabaabbaaab (3.6)

And its expression gives:

In this case, the termination point shifts two positions to
the right (position 12).

Suppose now that a more radical modification occurred,
and the symbols at positions 6 and 7 in the gene 3.5 above,
change respectively into ‘+’ and ‘*’, creating the follow-
ing gene:

012345678901234567890
+Q-/b*+*Qb aabaabbaaab (3.7)

Its expression gives:

In this case the termination point shifts several positions to
the right (position 14).

Obviously the opposite also happens, and the ORF is
shortened. For example, consider gene 3.5 above, and sup-
pose a mutation occurred at position 5, changing the ‘*’
into ‘a’:

012345678901234567890
+Q-/baaaQb aabaabbaaab (3.8)

Q

*b

a Q

a

a

a b

b aa a

Q

*

*

b

bQ

a

Its expression results in the following ET:

In this case, the ORF ends at position 7, shortening the
original ET in 3 nodes.

Despite its fixed length, each gene has the potential to
code for ETs of different sizes and shapes, being the sim-
plest composed of only one node (when the first element
of a gene is a terminal) and the biggest composed of as
many nodes as the length of the gene (when all the ele-
ments of the head are functions with the maximum number
of arguments, n).

It is evident from the examples above, that any modifi-
cation made in the genome, no matter how profound, al-
ways results in a valid ET. Obviously the structural organi-
sation of genes must be preserved, always maintaining the
boundaries between head and tail and not allowing sym-
bols representing functions on the tail. In section 5 is shown
how GEP operators work and how they modify the ge-
nome of GEP individuals during reproduction.

3.3. Multigenic chromosomes

GEP chromosomes are usually composed of more than
one gene of equal length. For each problem or run, the
number of genes, as well as the length of the head, is cho-
sen. Each gene codes for a sub-ET and the sub-ETs inter-
act with one another forming a more complex multi-subunit
ET. The details of such interactions will be fully explained
in section 3.4.

Consider, for example, the following chromosome with
length 27, composed of three genes (the tails are shown in
bold):

012345678012345678012345678
-b*b abbab *Qb+ abbba -*Qa bbaba (3.9)

It has three ORFs, and each ORF codes for a sub-ET (Fig-
ure 2). Position zero marks the start of each gene; the end
of each ORF, though, is only evident upon construction of
the respective sub-ET. As shown in Figure 2, the first ORF
ends at position 4 (sub-ET

1
); the second ORF ends at po-

sition 5 (sub-ET
2
); and the last ORF also ends at position

5 (sub-ET
3
). Thus, GEP chromosomes code for one or

more ORFs, each expressing a particular sub-ET. Depend-
ing on the task at hand, these sub-ETs may be selected
individually according to their respective fitness (for ex-
ample, in problems with multiple outputs), or they may
form a more complex, multi-subunit ET and be selected
according to the fitness of the whole, multi-subunit ET.
The patterns of expression and the details of selection will

a

Q

b

a a

5

©
 C

ân
di

da
 F

er
re

ira

be discussed throughout this paper. However, keep in mind
that each sub-ET is both a separate entity and a part of a
more complex, hierarchical structure, and, as in all com-
plex systems, the whole is more than the sum of its parts.

3.4. Expression trees and the phenotype

In nature, the phenotype has multiple levels of complexity,
being the most complex the organism itself. But tRNAs,
proteins, ribosomes, cells, etc., are also products of ex-
pression, and all of them are ultimately encoded in the ge-
nome.

In contrast to nature, in GEP the expression of the ge-
netic information is very simple. Nonetheless, GEP chro-
mosomes are composed of one or more ORFs, and obvi-
ously the encoded individuals have different degrees of
complexity. The simplest individuals are encoded in a sin-
gle gene, and the ‘organism’ is, in this case, the product of
a single gene - an ET. In other cases, the ‘organism’ is a
multi-subunit ET, in which the different sub-ETs are linked
together by a particular function. In other cases, the ‘or-
ganism’ emerges from the spatial organization of different
sub-ETs (in planning and problems with multiple outputs,
for example). And, in yet other cases, the ‘organism’
emerges from the interactions of conventional sub-ETs with
different domains (neural networks, for example). How-
ever, in all cases, the whole ‘organism’ is encoded in a
linear genome.

3.4.1. Posttranslational modifications

We have seen that translation results in the formation of
sub-ETs with different complexity but the complete ex-
pression of the genetic information requires the interac-
tion of these sub-ETs with one another. One of the most
simple interactions is the linking of sub-ETs by a particular
function. This process is similar to the assemblage of dif-
ferent protein subunits in a multi-subunit protein.

When the sub-ETs are algebraic expressions or Boolean

Figure 2. Expression of GEP genes as sub-ETs. a) A three-genic chromosome with the tails shown in bold. The arrows show the
termination point of each gene. b) The sub-ETs codified by each gene.

expressions, any mathematical or Boolean function can be
used to link the sub-ETs in a final, multi-subunit ET. The
functions most chosen are addition for algebraic sub-ETs,
and OR or IF for Boolean sub-ETs.

In the current version of GEP the linking function is a
priori chosen for each problem, but it can be easily intro-
duced in the genome, for instance in the last position of
chromosomes, and be also subject to adaptation. Indeed,
preliminary results suggest that this system works very well.

Figure 3 illustrates the linking of two sub-ETs by addi-
tion. Note that the root of the final ET (+) is not encoded
by the genome. Note also that the final ET could be lin-
early encoded as the following K-expression:

0123456789012
+Q**-bQ+abbba (3.10)

However, to evolve solutions for complex problems, it is
more effective the use of multigenic chromosomes, for they
permit the modular construction of complex, hierarchical
structures, where each gene codes for a small building
block. These small building blocks are separated from each
other, and thus can evolve independently. For instance, if
we tried to evolve a solution for the symbolic regression
problem presented in section 6.1 with single-gene chro-
mosomes, the success rate would fall significantly (see sec-
tion 6.1). In that case the discovery of small building blocks
is more constrained as they are no longer free to evolve
independently. These kind of experiments show that GEP
is in effect a powerful, hierarchical invention system capa-
ble of easily evolving simple blocks and using them to form
more complex structures.

Figure 4 shows another example of posttranslational
modification, where three Boolean sub-ETs are linked by
the function IF. Again, the multi-subunit ET could be
linearized as the following K-expression:

01234567890123456789012
IINAIAINu1ca3aa2acAOab2 (3.11)

5

Q

b

*

a

b *

ba

Q

bab

*b

-b*b *Qb+ -*Qaabbab abbba bbaba

b)

Sub-ET
1

Sub-ET
2

Sub-ET
3

a)

6

©
 C

ân
di

da
 F

er
re

ira

a)

b) Sub-ET
1

Sub-ET
3

Sub-ET
2

ET

IIAI NNAO Au12ca3aa2acu ab2u3c31c ua3112cac

A

N

N

b 2

O a

u 1

A

a

II

c 3a 2 caa

A

I

A

N

N

b 2

O a

u 1

A

I

a

II

c 3a 2 caa

A

I

c)

Q

*

Q

bb a

b

*

a

b

Sub-ET
1

Sub-ET
2 ET

012345678012345678
Q*Q+ *-babbaaa baabb

a

b

*

*

b a

Q

b

b

Q

b) c)

a)

Figure 3. Expression of multigenic chromosomes as expression trees. a) A two-
genic chromosome with the tails shown in bold. b) The sub-ETs codified by each
gene. c) The result of posttranslational linking with addition.

Figure 4. Expression of multigenic chromosomes as expression trees. a) A three-genic
chromosome with the tails shown in bold (‘N’ is a function of one argument and repre-
sents NOT; ‘A’ and ‘O’ are functions of two arguments and represent respectively AND
and OR; ‘I’ is a function of three arguments and represents IF; the remaining symbols
are terminals). b) The sub-ETs codified by each gene. c) The result of posttranslational
linking with IF.

7

©
 C

ân
di

da
 F

er
re

ira

Figure 5 shows another example of posttranslational
modification, where the sub-ETs are of the simplest kind
(one-element sub-ETs). In this case, the sub-ETs are linked
3 by 3 with the IF function, then these clusters are, in their
turn, linked also 3 by 3 with another IF function, and the
three last clusters are also linked by IF, forming a large
multi-subunit ET. This kind of chromosomal architecture
was used to evolve solutions for the 11-multiplexer prob-
lem of section 6.5.2 and also to evolve cellular automata
rules for the density-classification problem (results not
shown). Again, the individual of Figure 5 could be con-
verted in the following K-expression:

IIIIIIIIIIIII131u3ab2ubab23c3ua31a333au3 (3.12)

And finally, the full expression of certain chromosomes
requires the sequential execution of small plans, where the
first sub-ET does a little work, the second continues from
that, etc. The final plan results from the orderly action of
all sub-plans (see the block stacking problem in section
6.3).

The type of linking function, as well as the number of
genes and the length of each gene, are a priori chosen for
each problem. So, we can always start by using a single-
gene chromosome, gradually increasing the length of the
head; if it becomes very large, we can increase the number
of genes and of course choose a function to link them. We
can start with addition or OR, but in other cases another
linking function might be more appropriate. The idea, of
course, is to find a good solution, and GEP provides the
meanings of finding one.

In this section, two examples of fitness functions are de-
scribed. Other examples of fitness functions are given in
the problems studied in section 6. The success of a prob-
lem greatly depends on the way the fitness function is de-
signed: the goal must be clearly and correctly defined in
order to make the system evolve in that direction.

Figure 5. Expression of multigenic chromosomes as expression trees. a) A 27-genic chromosome composed of one-element genes.
b) The result of posttranslational linking with IF.

4. Fitness functions and selection

4.1. Fitness functions

One important application of GEP is symbolic regression,
where the goal is to find an expression that performs well
for all fitness cases within a certain error of the correct
value. For some mathematical applications it is useful to
use small relative or absolute errors in order to discover a
very good solution. But if the range of selection is exces-
sively narrowed, populations evolve very slowly and are
incapable of finding a correct solution. In the other hand,
if the opposite is done and the range of selection is broaden,
numerous solutions will appear with maximum fitness that
are far from good solutions.

To solve this problem, an evolutionary strategy was
devised that permits the discovery of very good solutions
without halting evolution. So, the system is left to find for
itself the best possible solution within a minimum error.
For that a very broad limit for selection to operate is given,
usually an absolute error of 100, that allows the selection
of very unfit individuals in earlier generations. However,
in later generations selection operates over these cumber-
some individuals and populations adapt wonderfully, find-
ing very good solutions that progressively approach a per-
fect solution. Mathematically this can be expressed by the
equation:

(4.1)

where M is the range of selection, and E is the absolute
error between the number generated by the ET and the
target value. The precision for the absolute error is usually
very small, for instance 0.01, but if a perfect solution could
not be found within this value, the system can find the op-
timal solution for itself. For example, for a set of 10 fitness
cases and an M = 100, f

max
 = 1000 if all the values are

within 0.01 of the correct value.
In another important GEP application, Boolean con-

cept learning, the fitness of an individual is a function of
the number of fitness cases on which it performs correctly.
For most Boolean applications, though, it is fundamental
to penalize individuals able to correctly solve about 50%

EMf −=

a)

b) ET

I II I II II I

1 2u u uu1 1a a aab b cba3 33 3 33 3 3 32

I I I

I

131u3ab2ubab23c3ua31a333au3

8

©
 C

ân
di

da
 F

er
re

ira

of fitness cases, as most probably this only reflects the 50%
likelihood of correctly solving a 2-binary Boolean func-
tion. So, it is advisable to only select individuals capable
of solving more than 50-75% of fitness cases. Below that
mark a symbolic value of fitness can be attributed, for in-
stance f = 1. Usually the process of evolution is put in
motion with this unfit individuals, for they are very easily
created in the initial population. However, in future gen-
erations, highly fit individuals start to appear, rapidly
spreading in the population. For easy problems, like
Boolean functions with 2-5 arguments, this is not really
important, but for more complex problems it is convenient
to choose a bottom line for selection. For these problems,
the following fitness function can be used:

(4.2)

where i is the number of fitness cases correctly evaluated,
and C is the total number of fitness cases.

4.2. Selection

In GEP, individuals are selected according to fitness by
roulette-wheel sampling [5]. In truth, I never experimented
with other selection methods for I’d rather let ‘nature’ take
its course. It is true that with this method, often the best
individuals are lost, but this might have some advantages
and make populations jump to another, very distant fitness
optimum. Of course, this deserves a careful study, but the
high performance of GEP indicates that this algorithm can
very efficiently walk (I would say fly, even) the fitness land-
scape, easily finding one of the highest optima. However,
the simple form of elitism implemented in GEP guarantees
the survival and cloning of the best individual to the next
generation. This way the best trait is never lost.

According to fitness and the luck of the roulette, individu-
als are selected to reproduce with modification, creating
the necessary genetic diversification that allows adapta-
tion in the long run.

Except for replication, where the genomes of all the
selected individuals are rigorously copied, all the remain-
ing operators randomly pick chromosomes to be subjected
to a certain modification. However, except for mutation,
each operator is not allowed to modify a chromosome more
than once. For instance, for a transposition rate of 0.7,
seven out of 10 different chromosomes are randomly cho-
sen.

Furthermore, in GEP, a chromosome might be chosen
by one or several genetic operators that introduce varia-
tion in the population. This feature also distinguishes GEP
from GP where an entity is never modified by more than
one operator at a time [6]. Thus, in GEP, the modifica-
tions of several genetic operators accumulate during re-
production, producing offspring very different from the
parents.

The section proceeds with the detailed description of
GEP operators, starting obviously with replication.

If Ci 4
3 , then if = ; e lse 1=f

5. Reproduction with modification

5.1. Replication

Although vital, replication is the most uninteresting op-
erator: alone it contributes nothing to genetic diversifica-
tion. (Indeed, replication, together with selection, is only
capable of causing genetic drift.) According to fitness and
the luck of the roulette, chromosomes are faithfully cop-
ied into the next generation. The fitter the individual the
higher the probability of leaving more offspring. Thus,
during replication the genomes of the selected individuals
are copied as many times as the outcome of the roulette.
The roulette is spun as many times as there are individuals
in the population, maintaining always the same population
size.

5.2. Mutation

Mutations can occur anywhere in the chromosome. How-
ever, the structural organisation of chromosomes must re-
main intact. In the heads any symbol can change into an-
other (function or terminal); in the tails terminals can only
change into terminals. This way, the structural organisa-
tion of chromosomes is maintained, and all the new indi-
viduals produced by mutation are structurally correct pro-
grams. Typically, a mutation rate (p

m
) equivalent to 2 point

mutations per chromosome is used. Consider the follow-
ing 3-genic chromosome:

012345678012345678012345678
-+-+ abaaa /bb/ ababb *Q*+ aaaba

Suppose a mutation changed the element in position 0
in gene 1 to ‘Q’; the element in position 3 in gene 2 to ‘Q’;
and the element in position 1 in gene 3 to ‘b’, obtaining:

012345678012345678012345678
Q+-+abaaa /bbQ ababb *b*+ aaaba

 Note that if a function is mutated into a terminal or
vice versa, or a function of one argument is mutated into a
function of two arguments or vice versa, the ET is modi-
fied drastically. Note also that the mutation on gene 2 is an
example of a neutral mutation, as it occurred in the non-
coding region of the gene.

It is worth noticing that in GEP there are no constraints
both in the kind of mutation and the number of mutations
in a chromosome: in all cases the newly created individu-
als are syntactically correct programs.

In nature, a point mutation in the coding sequence of a
gene can slightly change the structure of the protein or not
change it at all, as neutral mutations are fairly frequent
(for instance, mutations in introns, mutations that result in
the same amino acid due to the redundancy of the genetic
code, etc). Here, although neutral mutations exist, a muta-
tion in the coding sequence of a gene has a much more
profound effect: it usually drastically reshapes the ET.

In contrast to the current thought in evolutionary com-
putation, this capacity to reshape profoundly the ET is fun-
damental for evolvability. An exhaustive analysis of GEP
operators is beyond the scope of this paper, however, the

9

©
 C

ân
di

da
 F

er
re

ira

results presented in this work clearly show that our very
human wish not to disrupt the small functional blocks as
they appear in the expression trees and recombine them
carefully (as is done in GP) is conservative and works
poorly. In a genome/phenome system like GEP, the sys-
tem can find ways of creating and using these functional
blocks much more efficiently. The system’s ways are only
evident when they emerge in the expression tree.

5.3. Transposition and insertion sequence elements

The transposable elements of GEP are fragments of the
genome that can be activated and jump to another place in
the chromosome. In GEP there are three kinds of trans-
posable elements: i) short fragments with a function or
terminal in the first position that transpose to the head of
genes except to the root (insertion sequence elements or
IS elements); ii) short fragments with a function in the first
position that transpose to the root of genes (root IS ele-
ments or RIS elements); iii) and entire genes that trans-
pose to the beginning of chromosomes.

The existence of IS and RIS elements is a remnant of
the developmental process of GEP, as the first GEA used
only single-gene chromosomes, and in such systems a gene
with a terminal at the root was of little use. When multigenic
chromosomes were introduced this feature remained as
these operators are important to understand the mecha-
nisms of genetic variation . Indeed, the transforming power
of these operators show clearly that there is no need to be
conservative in evolutionary computation. For instance,
root insertion (the most disruptive operator) alone is ca-
pable of finding solutions by creating repetitive patterns
(this is one of the patterns observed, but certainly others
exist).

5.3.1. Transposition of IS elements

Any sequence in the genome might become an IS element,
being therefore these elements randomly selected through-
out the chromosome. A copy of the transposon is made
and inserted at any position in the head of a gene, except
at the start position.

Typically, a transposition rate (p
is
) of 0.1 and a set of

three IS elements of different length are used. The trans-
position operator randomly chooses the chromosomes, the
IS element, the target site, and the length of the transposon.
Consider the 2-genic chromosome bellow:

012345678901234567890012345678901234567890
*-+*a-+a*bbabbaabababQ**+abQbb*aa bbaaaabba

Suppose that the sequence ‘bba’ in gene 2 (positions 12-
14) was chosen to be an IS element, and the target site
was bond 6 in gene 1 (between positions 5 and 6). Then, a
cut is made in bond 6 and the block ‘bba’ is copied into the
site of insertion, obtaining:

012345678901234567890012345678901234567890
*-+*a- bba+babbaabababQ**+abQbb*aa bbaaaabba

During transposition, the sequence upstream the inser-
tion site stays unchanged, whereas the sequence down-
stream the copied IS element loses, at the end of the head,
as many symbols as the length of the IS element (in this
case the sequence ‘a*b’ was deleted). Note that, despite
this insertion, the structural organisation of chromosomes
is maintained, and therefore all newly created individuals
are syntactically correct programs. Note also that transpo-
sition can drastically reshape the expression tree, and the
more upstream the insertion site the more profound the
change.

5.3.2. Root transposition

All RIS elements start with a function, and thus are chosen
among the sequences of the heads. For that, a point is ran-
domly chosen in the head and the gene is scanned down-
stream until a function is found. This function becomes the
start position of the RIS element. If no functions are found,
it does nothing.

Typically a root transposition rate (p
ris

) of 0.1 and a set
of three RIS elements of different sizes are used. This op-
erator randomly chooses the chromosomes, the gene to be
modified, the RIS element, and its length. Consider the
following 2-genic chromosome:

012345678901234567890012345678901234567890
-ba*+-+-Q/abababbbaaaQ*b/ +bbabbaaaaaaaabbb

Suppose that the sequence ‘+bb’ in gene 2 was chosen to
be an RIS element. Then, a copy of the transposon is made
into the root of the gene, obtaining:

012345678901234567890012345678901234567890
-ba*+-+-Q/abababbbaaa +bbQ*b/ +bbaaaaaaaabbb

During root transposition, the whole head shifts to ac-
commodate the RIS element, losing, at the same time, the
last symbols of the head (as many as the transposon length).
As with IS elements, the tail of the gene subjected to trans-
position and all nearby genes stay unchanged. Note, again,
that the newly created programs are syntactically correct
because the structural organisation of the chromosome is
maintained.

The modifications caused by root transposition are
extremely radical, because the root itself is modified. In
nature, if a transposable element is inserted at the begin-
ning of the coding sequence of a gene, it will certainly
drastically change the corresponding protein, specially if
the insertion caused a frameshift mutation. Like mutation
and IS transposition, root insertion has a tremendous trans-
forming power and is excellent to create genetic variation.
This kind of operators prevent populations from becom-
ing stuck in local optima, finding easily and rapidly good
solutions.

5.3.3. Gene transposition

In gene transposition an entire gene functions as a
transposon and transposes itself to the beginning of the

10

©
 C

ân
di

da
 F

er
re

ira

chromosome. In contrast to the other forms of transposi-
tion, in gene transposition the transposon (the gene) is
deleted in the place of origin. This way, the length of the
chromosome is maintained.

The chromosome to undergo gene transposition is ran-
domly chosen, and one of its genes (except the first, obvi-
ously) is randomly chosen to transpose. Consider the fol-
lowing chromosome composed of 3 genes:

012345678012345678012345678
*a-*abbab -QQ/aaabb Q+abababb

Suppose gene 2 was chosen to undergo gene transposi-
tion. Then the following chromosome is obtained:

012345678012345678012345678
-QQ/aaabb *a-*abbabQ+abababb

Note that for numerical applications where the func-
tion chosen to link the genes is addition, the expression
evaluated by the chromosome is not modified. But the situ-
ation differs in other applications where the linking func-
tion is not commutative, for instance, the IF function cho-
sen to link the sub-ETs in the 11-multiplexer problem (sec-
tion 6.5.2). However, the transforming power of gene trans-
position reveals itself when this operator is conjugated with
crossover. For example, if two functionally identical chro-
mosomes or two chromosomes with an identical gene in
different positions recombine, a new individual with a du-
plicated gene may appear. It is know that the duplication
of genes plays an important role in biology and evolution
(for a general reference see [7]). Interestingly, in GEP, in-
dividuals with duplicated genes are commonly found in
the process of problem solving.

5.4. Recombination

In GEP there are three kinds of recombination: 1-point, 2-
point, and gene recombination. In all cases, two parent
chromosomes are randomly chosen and paired to exchange
some material between them.

5.4.1. One-point recombination

During 1-point recombination, the chromosomes cross over
a randomly chosen point to form two daughter chromo-
somes. Consider the following parent chromosomes:

012345678012345678
-b+Qbbabb/aQbbbaab
/-a/ababb-ba-abaaa

Suppose bond 3 in gene 1 (between positions 2 and 3) was
randomly chosen as the crossover point. Then, the paired
chromosomes are cut at this bond, and exchange between
them the material downstream the crossover point, form-
ing the offspring below:

012345678012345678
-b+ /ababb-ba-abaaa
/-a Qbbabb/aQbbbaab

With this kind of recombination, most of the times, the
offspring created exhibits different properties from those
of the parents. One-point recombination, like the above
mentioned operators, is a very important source of genetic
variation, being, after mutation, one of the operators most
chosen in GEP. The 1-point recombination rate (p

1r
) used

depends on the rates of other operators. Typically a global
crossover rate of 0.7 (the sum of the rates of the three
kinds of recombination) is used.

5.4.2. Two-point recombination

In 2-point recombination the chromosomes are paired and
the two points of recombination are randomly chosen. The
material between the recombination points is afterwards
exchanged between the two chromosomes, forming two
new daughter chromosomes. Consider the following par-
ent chromosomes:

0123456789001234567890
+*a*bbcccac*baQ*acabab -[1]
*cbb+cccbcc++**bacbaab-[2]

Suppose bond 7 in gene 1 (between positions 6 and 7) and
bond 3 in gene 2 (between positions 2 and 3) were chosen
as the crossover points. Then, the paired chromosomes
are cut at these bonds, and exchange the material between
the crossover points, forming the offspring below:

0123456789001234567890
+*a*bbc cbcc++* Q*acabab -[3]
*cbb+cc ccac*ba *bacbaab-[4]

Note that the first gene is, in both parents, split down-
stream the termination point. Indeed, the non-coding re-
gions of GEP chromosomes are ideal regions where chro-
mosomes can be split to cross over without interfering with
the ORFs. Note also that the second gene of chromosome
1 was also cut downstream the termination point. How-
ever, gene 2 of chromosome 2 was split upstream the ter-
mination point, changing profoundly the sub-ET. Note also
that when these chromosomes recombined, the non-cod-
ing region of chromosome 1 was activated and integrated
in chromosome 3.

The transforming power of 2-point recombination is
greater than 1-point recombination, and is most useful to
evolve solutions for more complex problems, specially
when multigenic chromosomes composed of several genes
are used.

5.4.3. Gene recombination

In gene recombination an entire gene is exchanged during
crossover. The exchanged genes are randomly chosen and
occupy the same position in the parent chromosomes.
Consider the following parent chromosomes:

012345678012345678012345678
/aa-abaaa/a*bbaaab/Q*+aaaab
/-*/abbabQ+aQbabaa-Q/Qbaaba

10

11

©
 C

ân
di

da
 F

er
re

ira

Suppose gene 2 was chosen to be exchanged. In this case
the following offspring is formed:

012345678012345678012345678
/aa-abaaa Q+aQbabaa/Q*+aaaab
/-*/abbab /a*bbaaab -Q/Qbaaba

The newly created individuals contain genes from both
parents. Note that with this kind of recombination, similar
genes can be exchanged but, most of the times, the ex-
changed genes are very different and new material is intro-
duced in the population.

It is worth noticing that this operator is unable to cre-
ate new genes: the individuals created are different arrange-
ments of existing genes. In fact, when gene recombination
is used as the unique source of genetic variation, more
complex problems can only be solved using very large ini-
tial populations in order to provide for the necessary di-
versity of genes. However, the creative power of GEP is
based not only in the shuffling of genes or building blocks,
but also in the constant creation of new genetic material.

The suite of problems chosen to illustrate the functioning
of this new algorithm is quite varied, including not only
problems from different fields (symbolic regression, plan-
ning, Boolean concept learning, and cellular automata rules)
but also problems of great complexity (cellular automata
rules for the density-classification task).

Problems with the kind of complexity exhibited by sym-
bolic regression, sequence induction, block stacking, or
the 11-multiplexer, are frequently used when comparisons
are made between different evolutionary algorithms [8].
The comparisons are usually made in terms of likelihood
of success and in terms of the average number of fitness-
function evaluations needed to find a correct solution.
Despite the differences between GEP and GP, the perform-
ance of these techniques can be easily compared because
identical problems can be similarly implemented due to the
phenotypic tree representation.

Comparisons are made on five problems and, when-
ever possible, the performance of GEP and GP is com-
pared in terms of the average number of fitness-functions
evaluations (F

z
) needed to find a correct program with a

certain probability (z). F
z
 is evaluated by the equation:

(6.1)

where G is the number of generations; P the population
size; C the number of fitness cases; and R

z
 the number of

independent runs required to find a correct solution by
generation G with z = 0.99. R

z
 is evaluated by the formula:

(6.2)

where P
s
 is the probability of success; if P

s
 = 1, then

R
z
 = 1.

6. Gene expression programming in
problem solving: six examples

zz RCPGF ⋅⋅⋅=

6.1. Symbolic regression

The objective of this problem is the discovery of a sym-
bolic expression that satisfies a set of fitness cases. Con-
sider we are given a sampling of the numerical values from
the function

(6.3)

over ten chosen points and we wanted to find a function
fitting those values within 0.01 of the correct value.

First, the set of functions F and the set of terminals T
must be chosen. In this case F = {+, -, *, /} and T = {a}.
Then the structural organisation of chromosomes, namely
the length of the head and the number of genes, is chosen.
It is advisable to start with short, single-gene chromosomes
and then gradually increase h. Figure 6 shows such an analy-
sis for this problem. A p

m
 equivalent to two point muta-

tions per chromosome and a p
1r
 = 0.7 were used in all the

experiments in order to simplify the analysis. The set of
fitness cases C is shown in Table 1 and the fitness was
evaluated by equation 4.1, being M = 100. If E equal or
less than 0.01, then E = 0 and f = 100; thus for C = 10,
 f

max
 = 1000.
Note that GEP can be useful in searching the most par-

simonious solution to a problem. For instance, the chro-
mosome

0123456789012
*++/**aaaaaaa

with h = 6 codes for the ET:

which is equivalent to the target function. Note also that
GEP can efficiently evolve solutions using large values of
h, i.e. is capable of evolving large and complex sub-ETs.
As shown in Figure 6, for each problem there is an optimal
chromosome length to efficiently evolve solutions. It is
worth noticing that the most compact genomes are not the
most efficient. Therefore a certain redundancy is funda-
mental to efficiently evolve good programs.

In another analysis, the relationship between success
rate and P, using an h = 24 was studied (Figure 7). These
results show the supremacy of a genotype/phenotype rep-
resentation, as this single-gene system which is equivalent
to GP, greatly surpasses that technique [6]. However, GEP
is much more complex than a single-gene system because

 ()s
z P

z
R

−
−=

1lo g

1lo g
, an d 1≠sP

aaaay +++= 234

*

a a a aa a

a*

*

12

©
 C

ân
di

da
 F

er
re

ira

Table 1.
Set of fitness cases for the symbolic regression
problem.

GEP chromosomes can encode more than one gene.
Suppose we could not find a solution after the analysis

of Figure 7. Then we could increase the number of genes,
and choose a function to link them. For instance, we could
choose an h = 6 and then increase the number of genes
gradually. Figure 8 shows how the success rate for this
problem depends on the number of genes. In this analysis,
the p

m
 was equivalent to two point mutations per chromo-

some, p
1r
 = 0.2, p

2r
 = 0.5, p

gr
 = 0.1, p

is
 = 0.1, p

ris
 = 0.1,

p
gt
 = 0.1, and three transposons (both IS and RIS elements)

of lengths 1, 2 and 3 were used. Note that GEP can cope

very well with an excess of genes: the success rate for the
10-genic system is still very high (47%).

In Figure 9 another important relationship is shown:
how the success rate depends on evolutionary time (G). In
contrast to GP where 51 generations are the norm, for
after that nothing much can possibly be discovered [4], in
GEP, populations can adapt and evolve indefinitely because
new material is constantly being introduced in the genetic
pool.

Finally, suppose that the multigenic system with sub-
ETs linked by addition could not evolve a satisfactory so-
lution. Then we could choose another linking function, for
instance multiplication. This process is repeated until a good
solution has been found.

Figure 7. Variation of success rate (Ps) with population size (P).
For this analysis G = 50, and a medium value of h = 24 was used.
Ps was evaluated over 100 identical runs.

Figure 8. Variation of success rate (Ps) with the number of genes.
For this analysis G = 50, P = 30 and h = 6. Ps was evaluated over
100 identical runs.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

C hrom osom e length

S
uc

ce
ss

ra
te

(%
)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

P opu lation size

S
uc

ce
ss

ra
te

(%
)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

N um ber of genes

S
uc

ce
ss

ra
te

(%
)

Figure 6. Variation of success rate (Ps) with chromosome length.
For this analysis G = 50, P = 30, and Ps was evaluated over 100
identical runs.

a f(a)

2.81 952.425

6 1554

7.043 2866.55

8 4680

10 11110

11.38 18386

12 22620

14 41370

15 54240

20 168420

13

©
 C

ân
di

da
 F

er
re

ira

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

N um ber o f g enera tions

S
uc

ce
ss

ra
te

(%
)

Figure 9. Variation of success rate (Ps) with the number of
generations (G). For this analysis P = 30 and a medium value of
h = 39 was used. Ps was evaluated over 100 identical runs.

Table 2.
Parameters for the symbolic regression (SR), sequence induction (SI), block stacking (BS), and
11-multiplexer (11-M) problems.

SR SI BS 11-M
N um ber o f runs 100 100 100 100

N um ber o f gene ra tions 50 100 100 400

P opu la tion s ize 30 50 30 250

N um ber o f fitness cases 10 10 10 160

H ead leng th 6 6 4 1

N um ber o f genes 3 7 3 27

C hrom osom e length 39 91 27 27

M uta tion ra te 0 .051 0 .022 0 .074 0 .074

1 -P oin t recom bination ra te 0 .2 0 .7 0 .1 0 .7

2 -P o in t recom bination ra te 0 .5 0 .1 -- --

G ene recom bination ra te 0 .1 0 .1 0 .7 --

IS transposition ra te 0 ,1 0 ,1 0 ,1 --

IS e lem en ts leng th 1 ,2 ,3 1 ,2 ,3 1 --

R IS transposition ra te 0 .1 0 .1 0 .1 --

R IS e lem en ts leng th 1 ,2 ,3 1 ,2 ,3 1 --

G ene transpos ition ra te 0 .1 0 .1 -- --

S e lec tion range 100 100 -- --

A bso lu te erro r 0 .01 0 .0 -- --

S uccess ra te 1 0 .79 0 .7 0 .57

As I have said, GEP chromosomes can be easily modi-
fied in order to encode the linking function as well. In this
case, for each problem the ideal linking function would be
found in the process of adaptation.

Consider for instance a multigenic system composed
of 3 genes linked by addition. As shown in Figure 8, the
success rate has in this case the maximum value of 100%.
Figure 10 shows the progression of average fitness of the
population and the fitness of the best individual for run 0
of the experiment summarised in Table 2, column 1. In this
run, a correct solution was found in generation 11 (the
sub-ETs are linked by addition):

012345678901201234567890120123456789012
-*a+aaaaaaa++a*aaaaaaa*+-a/aaaaaaaa

Mathematically it corresponds to the target function (the
contribution of each sub-ET is indicated in brackets):

y = (a4) + (a3 + a2 + a) + (0) = a4 + a3 + a2 + a

The detailed analysis of this program shows that some
of the actions are redundant for the problem at hand, like
the addition of zero or multiplication by 1. However, the
existence of these unnecessary clusters or even
pseudogenes like gene 3 is important to the evolution of

14

©
 C

ân
di

da
 F

er
re

ira

In the sequence 1, 15, 129, 547, 1593, 3711, 7465,
13539, 22737, 35983, 54321,..., the nth (N) term is

 (6.4)

where a
n
 consists of the non-negative integers 0, 1, 2, 3,....

For this problem F = {+, -, *, /} and T = {a}. The set of
fitness cases C is shown in Table 4 and the fitness was
evaluated by equation 4.1, being M = 100. Thus, if the 10
fitness cases were computed exactly, f

max
 = 1000.

Figure 11 shows the progression of average fitness of
the population and the fitness of the best individual for run
0 of the experiment summarised in Table 2, column 2. In
this run, a perfect solution was found in generation 24 (the
sub-ETs are linked by addition):

0123456789001012345678900101234567890010123456789001...

++—aaaaaaa*+/+a*aaaaaaa*+*+*+aaaaaaa*-*+aaaaaaa...

...012345678900101234567890010123456789001

...*a/+a-aaaaaaa-+-/**aaaaaaa**+a*+aaaaaaa

Mathematically it corresponds to the target sequence (the
contribution of each sub-ET is indicated in brackets):

y = (0) + (3a2) + (2a4 + 4a3) + (0) + (a) + (1+ a) + (3a4)

As shown in column 2 of Table 2, the probability of
success for this problem is 0.79. The comparison of F

z

values obtained by GEP and GP for this problem [6] (Ta-
ble 3, column 2) shows that GEP surpasses GP in 98.6
times. It should be emphasised, though, that GEP not only
is capable of solving this kind of problems much more ef-
ficiently than GP, but does so without using the ephemeral
random constant R, which consists of a set of chosen num-
bers (terminals) that greatly hinders the usefulness of the
technique. For instance, for this sequence the R chosen
ranged over the integers 0, 1, 2, and 3 [6]. The advantages
of GEP are obvious because, first, in real life applications
we never know beforehand what kind of constants are
needed and, second, the number of elements in the termi-
nal set is much smaller, reducing the complexity of the prob-
lem.

Table 3.
Comparison of GEP with GP in symbolic regression, sequence induction, and block stacking problems.

12345 234 ++++= nnnn aaaaN

Sym bolic regression Sequence induction B lock stacking

G E P G P [6] G E P G P [6] G E P G P [8]

G 50 51 10 0 51 10 0 51

P 30 50 0 50 50 0 30 50 0

C 10 20 10 20 10 16 7

P s 1 0 .3 5 0 .7 9 0 .1 5 0 .7 0 .7 67

R z 1 11 3 29 4 4

F z 15 ,000 5 ,6 10 ,0 00 15 0 ,000 14 ,790 ,000 12 0 ,000 17 ,034 ,000

Figure 10. Progression of average fitness of the population and
the fitness of the best individual for run 0 of the experiment sum-
marised in Table 2, column 1.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

G enerations

F
itn

es
s

(m
ax

10
00

)

B est Ind

Avg fitness

more fit individuals (compare, in Figures 6 and 8, the suc-
cess rate of a compact, single-genic system with h = 6 with
other less compact systems).

The comparison of F
z
 values obtained by GEP and GP

[6] for this problem (Table 3, column 1) shows that GEP
surpasses GP in 374 times, more than two orders of mag-
nitude.

6.2. Sequence induction

The problem of sequence induction is a special case of
symbolic regression where the domain of the independent
variable consists of the non-negative integers. However,
the sequence chosen is more complicated than the expres-
sion used in symbolic regression, as different coefficients
were used.

15

©
 C

ân
di

da
 F

er
re

ira

6.3. Block stacking

In block stacking, the goal is to find a plan that takes any
initial configuration of blocks randomly distributed between
the stack and the table and place them in the stack in the
correct order. In this case, the blocks are the letters of the
word “universal”. (Although the word “universal” was used
as illustration, in this version the blocks being stacked may
have identical labels like, for instance, in the word “indi-
vidual”.)

The functions and terminals used for this problem con-
sisted of a set of actions and sensors, being F = {C, R, N,
A} (move to stack, remove from stack, not, and do until

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

G enera tions

F
itn

e
ss

(m
a

x
10

00
)

B est Ind

Avg fitness

Figure 11. Progression of average fitness of the population and
the fitness of the best individual for run 0 of the experiment sum-
marised in Table 2, column 2.

Table 4.
Set of fitness cases for the se-
quence induction problem.

a N
1 15
2 129
3 547
4 1593
5 3711
6 7465
7 13539
8 22737
9 35983

10 54321

true, respectively), where the first three take one argu-
ment and ‘A’ takes two arguments. In this version, the ‘A’
loops are processed at the beginning, are solved in a par-
ticular order (from bottom to top and from left to right),
the action argument is executed at least once despite the
state of the predicate argument and each loop is executed
only once, timing out after 20 iterations. The set of termi-
nals consisted of 3 sensors {u, t, p} (current stack, top
correct block, and next needed block, respectively). In this
version, ‘t’ refers only to the block on the top of the stack
and whether it is correct or not; if the stack is empty or has
some blocks, all of them correctly stacked, the sensor re-
turns True, otherwise returns False; and ‘p’ refers obvi-
ously to the next needed block immediately after ‘t’.

A multigenic system composed of 3 genes of length 9
was used in this problem. The linking of the sub-ETs con-
sisted of the sequential execution of each sub-ET or sub-
plan. For instance, if the first sub-ET empties all the stacks,
the next sub-ET may proceed to fill them, etc. The fitness
was determined against 10 fitness cases (initial configura-
tions of blocks). For each generation, an empty stack plus
nine initial configurations with one to nine letters in the
stack were randomly generated. The empty stack was used
to prevent the untimely termination of runs, as a fitness
point was attributed to each empty stack (see below).
However, GEP is capable of efficiently solving this prob-
lem using uniquely 10 random initial configurations (re-
sults not shown).

The fitness function was as follows: for each empty
stack one fitness point was attributed, for each partially
and correctly packed stack (i.e., with 1 to 8 letters in the
case of the word “universal”) two fitness points were at-
tributed, and for each completely and correctly stacked
word 3 fitness points were attributed. Thus, the maximum
fitness was 30. The idea was to make the population of
programs hierarchically evolve solutions toward a perfect
plan. And, in fact, usually the first useful plan discovered
empties all the stacks, then some programs learn how to
partially fill those empty stacks, and finally a perfect plan
is discovered that fills the stacks completely and correctly
(see Figure 12).

Figure 12 shows the progression of average fitness of
the population and the fitness of the best individual for run
2 of the experiment summarised in Table 2, column 3. In
this run, a perfect plan was found in generation 50:

012345678012345678012345678
ARCuptppuApNCptuutNtpRppptp

Note that the first sub-plan removes all the blocks and
stacks a correct letter; the second sub-plan correctly stacks
all the remaining letters; and the last sub-plan does noth-
ing. It should be emphasised that the plans with maximum
fitness evolved are in fact perfect, universal plans: each
generation they are tested against 9 randomly generated
initial configurations, more than sufficient to allow the al-
gorithm to generalise the problem (as shown in Figure 12,
once reached, the maximum fitness is maintained). Indeed,
with the fitness function and the kind of fitness cases used,
all plans with maximum fitness are universal plans.

16

©
 C

ân
di

da
 F

er
re

ira

Figure 12. Progression of average fitness of the population and
the fitness of the best individual for run 2 of the experiment sum-
marised in Table 2, column 3.

t = 1

1 1 1

b

1

u

1

10

c

t = 0 0

a

1

1 2 3

0 0 0

Figure 13. A one-dimensional, binary-state, r = 3 cellular automa-
ton with N = 11. The arrows represent the periodic boundary con-
ditions. The updated state is shown only for the central cell. The
symbols used to represent the neighborhood are also shown.

The task of density-classification consists of correctly
determining whether ICs contain a majority of 1’s or a
majority of 0’s, by making the system converge, respec-
tively, to an all 1’s state (black or ‘on’ cells in a space-time
diagram), and to a state of all 0’s (white or ‘off’ cells).
Being the density of an IC a function of N arguments, the
actions of local cells with limited information and commu-
nication must be co-ordinated with one another to cor-
rectly classify the ICs. Indeed, to find rules that perform
well is a challenge, and several algorithms were used to
evolve better rules [10, 12, 13, 14]. The best rules with
performances of 86.0% (coevolution 2) and 85.1%
(coevolution 1) were discovered using a coevolutionary
approach between GA evolved rules and ICs [14]. How-
ever, the aim of this section is to compare the performance
of GEP with the other genetic algorithms (GAs and GP)
when applied to a difficult problem. And, in fact, GEP could
evolve better rules than the GP rule, using computational
resources that are more than four orders of magnitude
smaller than those used by GP.

As shown in the third column of Table 2, the probabil-
ity of success for this problem is 0.70. The comparison of
F

z
 values obtained by GEP and GP for this problem (Table

3, column 3) shows that GEP surpasses GP in 142 times,
more than two orders of magnitude. It is worth noticing
that GP uses 167 fitness cases, cleverly constructed to cover
the various classes of possible initial configurations,
whereas GEP uses 9 (out of 10) random initial configura-
tions. Indeed, in real life applications not always is possi-
ble to predict the kind of cases that would make the sys-
tem discover a solution. So, algorithms capable of gener-
alising well in face of random fitness cases are more ad-
vantageous.

6.4. Evolving cellular automata rules for the
density - classification problem

Cellular automata (CA) have been studied widely as they
are idealized versions of massively parallel, decentralized
computing systems capable of emergent behaviors. These
complex behaviors result from the simultaneous execution
of simple rules at multiple local sites. In the density-classi-
fication task, a simple rule involving a small neighborhood
and operating simultaneously in all the cells of a one-di-
mensional cellular automaton, should be capable of mak-
ing the CA converge into a state of all 1’s if the initial
configuration (IC) has a higher density of 1’s, or into a
state of all 0’s if the IC has a higher density of 0’s.

The ability of GAs to evolve CA rules for the density-

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

G enera tions

F
itn

es
s

(m
ax

30
)

B est Ind

Avg fitness

classification problem was intensively investigated [9, 10,
11, 12], but the rules discovered by the GA performed
poorly and were far from approaching the accuracy of the
GKL rule, a human-written rule. GP was also used to evolve
rules for the density-classification task [13], and a rule was
discovered that surpassed the GKL rule and other human-
written rules.

In this section is shown how GEP was successfully
applied to this difficult problem. The rules evolved by GEP
have accuracy levels of 82.513% and 82.55%, thus ex-
ceed all human-written rules and the rule evolved by GP.

6.4.1. The density-classification task

The simplest CA is a wrap-around array of N binary-state
cells, where each cell is connected to r neighbors from
both sides. The state of each cell is updated by a defined
rule. The rule is applied simultaneously in all the cells, and
the process is iterated for t time steps.

In the most frequently studied version of this problem,
N = 149 and the neighborhood is 7 (the central cell is rep-
resented by ‘u’; the r = 3 cells to the left are represented
by ‘c’, ‘b’, and ‘a’; the r = 3 cells to the right are repre-
sented by ‘1’, ‘2’, and ‘3’). Thus the size of the rule space
to search for this problem is the huge number of 2128. Fig-
ure 13 shows a CA with N = 11 and the updated state for
the cellular automaton ‘u’ upon application of a certain
transition rule.

17

©
 C

ân
di

da
 F

er
re

ira

6.4.2. Two GEP discovered rules

In one experiment F = {A, O, N, I} (‘A’ represents the
Boolean function AND, ‘O’ represents OR, ‘N’ represents
NOT, and ‘I’ stands for IF) and T = {c, b, a, u, 1, 2, 3}.
The parameters used per run are shown in Table 5, column
1. The fitness was evaluated against a set of 25 unbiased
ICs (fitness cases). In this case, the fitness is a function of
the number of ICs i for which the system stabilises cor-
rectly to a configuration of all 0’s or 1’s after 2xN time
steps, and it was designed in order to privilege individuals
capable of correctly classifying ICs both with a majority of
1’s and 0’s. Thus, if the system converged, in all cases,
indiscriminately to a configuration of 1’s or 0’s, only one
fitness point was attributed; if, in some cases, the system
correctly converged either to a configuration of 0’s or 1’s,
f = 2; in addition, rules converging to an alternated pattern
of all 1’s and all 0’s configurations were eliminated, as they
are easily discovered and invade the populations impeding
the discovery of good rules; and finally, when an individual
program could correctly classify ICs both with majorities
of 1’s and 0’s, a bonus equal to the number of ICs, C, was
added to the number of correctly classified ICs, being in
this case f = i + C. For instance, if a program correctly
classified two ICs, one with a majority of 1’s and another
with a majority of 0’s, it receives 2+25=27 fitness points.

In this experiment a total of 7 runs were made. In gen-
eration 27 of run 5, an individual evolved with fitness 44:

0123456789012345678901234567890123456789012345678901
OAIIAucONObAbIANIb1u23u3a12aacb3bc21aa2baabc3bccuc13

Note that the ORF ends at position 28. This program has
an accuracy of 0.82513 tested over 100,000 unbiased ICs
in a 149x298 lattice, thus better than the 0.824 of the GP
rule tested in a 149x320 lattice [14, 13]. The rule table of
this rule (GEP

1
 rule) is shown in Table 6. Figure 14 shows

three space-time diagrams for this new rule.
As a comparison, the GP technique used populations

of 51,200 individuals and 1000 ICs for 51 generations [13],
thus a total of 51,200 x 1000 x 51 = 2,611,200,000 fitness
evaluations were made, whereas GEP only made 30 x 25 x
50 = 37,500 fitness evaluations. Therefore GEP outper-

Table 5.
Parameters for the density-classification task.

forms GP in more than 4 orders of magnitude (69,632
times). And as John Holland said in his book Emergence:
from chaos to order, “In the sciences, three orders of mag-
nitude is enough to call for a new science.” Indeed, in na-
ture, the creation of an indivisible whole, consisting of a
genotype and a phenotype, originated life.

In another experiment a rule slightly better than GEP
1
,

with an accuracy of 0.8255, was obtained. Again, its per-
formance was determined over 100,000 unbiased ICs in a
149x298 lattice. In this case F = {I, M} (‘I’ stands for IF,
and ‘M’ represents the majority function with 3 arguments),
and T was obviously the same. In this case, a total of 100
unbiased ICs and three-genic chromosomes with sub-ETs
linked by the Boolean function IF were used. The param-
eters used per run are shown in the second column of Ta-
ble 5.

The fitness function was slightly modified by introduc-
ing a ranking system, where individuals capable of cor-
rectly classifying between [2; 3/4 C] of the ICs received
one bonus equal to C; if correctly classified between]3/4
C; 17/20 C] ICs received 2 bonus; and if correctly classi-
fied more than 17/20 C ICs received 3 bonus. Also, in this
experiment, individuals capable of correctly classifying only
one kind of situation, although not indiscriminately, were
differentiated and had a fitness of i.

Table 6.
Description of the two new rules (GEP1 and GEP2) discovered using gene expression programming for the density-classification
problem. The GP rule is also shown. The output bits are given in lexicographic order starting with 0000000 and finishing with
1111111.

17

G E P 1 G E P 2

N um ber o f gene rations 50 50
P opu la tion s ize 30 50
N um ber o f IC s 25 100
H ead leng th 17 4
N um ber o f genes 1 3
C hrom osom e leng th 52 39
M uta tion ra te 0 .038 0 .051
1 -P oin t recom b ina tion ra te 0 .5 0 .7
IS transposition ra te 0 .2 --
IS e lem en ts leng th 1 ,2 ,3 --
R IS transposition ra te 0 .1 --
R IS e lem en ts leng th 1 ,2 ,3 --

00010001 00000000 01010101 00000000 00010001 00001111 01010101 00001111
00010001 11111111 01010101 11111111 00010001 11111111 01010101 11111111

00000000 01010101 00000000 01110111 00000000 01010101 00000000 01110111
00001111 01010101 00001111 01110111 11111111 01010101 11111111 01110111

00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

G EP 1

G EP 2

G P ru le

18

©
 C

ân
di

da
 F

er
re

ira

Figure 14. Three space-time diagrams describing the evolution of CA states for the GEP1 rule. The number of 1’s in the IC (0) is shown
above each diagram. In a) and b) the CA correctly converged to a uniform pattern; in c) it converged wrongly to a uniform pattern.

By generation 43 of run 10, an individual evolved with
fitness 393:

012345678901201234567890120123456789012
MIuua1113b21cMIM3au3b2233bM1MIacc1cb1aa

Its rule table is shown in Table 6. Figure 15 shows three
space-time diagrams for this new rule (GEP

2
). Again, in

this case the comparison with GP shows that GEP outper-
forms GP in 10,444 times.

6.5. Boolean concept learning

The GP rule and the 11-multiplexer are, respectively,
Boolean functions of seven and 11 activities. Whereas the

Figure 15. Three space-time diagrams describing the evolution of CA states for the GEP2 rule. The number of 1’s in the IC (0) is shown
above each diagram. In a) and b) the CA converges, respectively, to the correct configuration of all 0’s and all 1’s; in c) the CA could not
converge to a uniform pattern.

solution for the 11-multiplexer is a well known Boolean
function, the solution of the GP rule is practically unknown,
as the program evolved by GP [13] is so complicated that
it is impossible to know what the program really does.

In this section is shown how GEP can be efficiently
applied to evolve Boolean expressions of several argu-
ments. Furthermore, the structural organisation of the chro-
mosomes used to evolve solutions for the 11-multiplexer
is an example of a very simple organisation that can be
used to efficiently solve certain problems. For example,
this organisation (one-element genes linked by IF) was
successfully used to evolve CA rules for the density-clas-
sification problem, discovering better rules than the GKL
rule (results not shown).

20

20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

20

20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

20

20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

a) 71ρ =0 b) 79ρ =0 c) 75ρ =0

20

20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

20

20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

20

20 40 60 80 100 120 140

40

60

80

100

120

140

160

180

200

a) 72ρ =0 b) 76ρ =0 c) 77ρ =0

19

©
 C

ân
di

da
 F

er
re

ira

6.5.1. The GP rule problem

For this problem F = { N, A, O, X, D, R, I, M} (represent-
ing, respectively: NOT, AND, OR, XOR, NAND, NOR,
IF, and Majority, being the first a function of one argu-
ment, the second through fifth are functions of two argu-
ments, and the last two are functions of three arguments),
and T = {c, b, a, u, 1, 2, 3}. The rule table (27=128 fitness
cases) is shown in Table 6 and the fitness was evaluated by
equation 4.2. Thus, f

max
 = 128.

Three different solutions were discovered in one ex-
periment:

MA3OOAMOAuOMRa1cc3cubcc2cu11ba2aacb331ua122uu1
X3RRMIMODIAIAAI3cauuc313bub2uc33ca12u233c22bcb
MMOIOcXOMa3AXAu3cc112ucbb3331uac3cu3auubuu2ab1

The careful analysis of these programs shows that the GP
rule is, like the GKL rule, a function of five arguments: c,
a, u, 1, and 3.

6.5.2. The 11-multiplexer problem

The task of the 11-bit Boolean multiplexer is to decode a 3
binary address (000, 001, 010, 011, 100, 101, 110, 111)
and return the value of the correspondent data register (d

0
,

d
1
, d

2
, d

3
, d

4
, d

5
, d

6
, d

7
). Thus, the Boolean 11-multiplexer

is a function of 11 arguments: three, a
0
 to a

2
, determine the

address, and eight, d
0
 to d

7
, determine the answer. As GEP

uses single character chromosomes, T = {a, b, c, 1, 2, 3, 4,
5, 6, 7, 8} which correspond, respectively, to {a

0
, a

1
, a

2
, d

0
,

d
1
, d

2
, d

3
, d

4
, d

5
, d

6
, d

7
}.

There are 211 = 2048 possible combinations for the 11
arguments of the Boolean 11-multiplexer function. For this
problem a random sampling of the 2048 combinations was
used as the fitness cases for evaluating fitness. The fitness
cases were assembled by address, and for each address a
sub-set of 20 random combinations was used each genera-
tion. Therefore, a total of 160 random fitness cases were
used each generation as the adaptation environment. In
this case, the fitness of a program is the number of fitness
cases for which the Boolean value returned is correct, plus
a bonus of 180 fitness points for each sub-set of combina-
tions solved correctly as a whole. Therefore, a total of 200
fitness points was attributed for each correctly decoded
address, being the maximum fitness 1600. The idea was to
make the algorithm decode one address at a time. And, in
fact, the individuals learn to decode first one address, then
another, until the last one (see Figure 16).

To solve this problem, multigenic chromosomes com-
posed of 27 genes were used, each gene consisting only of
one terminal. Thus, no functions were used to generate
the chromosomes, although the sub-ETs were
posttranslationally linked by IF.

The parameters used per run are shown in column 4 of
Table 2. The first correct solution in this experiment was
found in generation 390 of run 1 (the characters are linked
3 by 3, forming an ET with depth 4, composed of 40 nodes,
being the first 14 nodes IFs, and the remaining nodes, the

chromosome characters; see K-expression 3.12 and Fig-
ure 5):

3652bb5bbba4c87c43bcca62a51

which is a universal solution for the 11-multiplexer. Figure
16 shows the progression of average fitness of the popula-
tion and the fitness of the best individual for run 1 of the
experiment summarised in Table 2, column 4.

As shown in the fourth column of Table 2, GEP solves
the 11-multiplexer with a success rate of 0.57. It’s worth
noticing that GP could not solve the 11-multiplexer with a
population size 500 for 51 generations [8], and could only
solve it using 4,000 individuals [6].

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400

G enera tions

F
itn

es
s

(m
ax

16
00

)

B es t Ind

Av g fitness

Figure 16. Progression of average fitness of the population and
the fitness of the best individual for run 1 of the experiment sum-
marised in Table 2, column 4.

The details of implementation of GEP were thoroughly
explained allowing other researchers to implement this new
algorithm. Furthermore, the problems chosen to illustrate
the functioning of GEP show that the new paradigm can
be used to solve several problems from different fields with
the advantage of running efficiently in a personal compu-
ter. The new concept behind the linear chromosomes and
the ETs enabled GEP to considerably outperform GP: more
than two orders of magnitude in symbolic regression, se-
quence induction, and block stacking, and more than four
orders of magnitude in the density-classification problem.
Therefore, GEP offers new possibilities to solve more com-

7. Conclusions

20

©
 C

ân
di

da
 F

er
re

ira

Acknowledgements

References

1. M. Mitchell, An Introduction to Genetic Algorithms,
MIT Press, 1996.

2. J. Maynard Smith and E. Szathmáry, The Major Transi-
tions in Evolution, W. H. Freeman, 1995.

3. M. J. Keith and M. C. Martin, Genetic Programming in
C++: Implementation Issues. In K. E. Kinnear, ed., Ad-
vances in Genetic Programming, MIT Press, 1994.

4. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,
Genetic Programming: An Introduction: On the Automatic
Evolution of Computer Programs and its Applications,
Morgan Kaufmann, 1998.

5. D. E. Goldberg, Genetic Algorithms in Search, Optimi-
zation, and Machine Learning, Addison-Wesley, 1989.

6. J. R. Koza, Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection, Cam-
bridge, MA: MIT Press, 1992.

7. C. K. Mathews, K. E. van Holde, and K. G. Ahern,
Biochemistry, 3rd ed., Benjamin/Cummings, 2000.

8. U.-M. O’Reilly and F. Oppacher, A comparative analy-
sis of genetic programming. In P. J. Angeline and K. E.
Kinnear, eds., Advances in Genetic Programming 2, MIT
Press, 1996.

9. M. Mitchell, P. T. Hraber, and J. P. Crutchfield, 1993.
Revisiting the edge of chaos: Evolving cellular automata
to perform computations. Complex Systems 7, 89-130.

10. M. Mitchell, J. P. Crutchfield, and P. T. Hraber, 1994.
Evolving cellular automata to perform computations:
Mechanisms and impediments. Physica D: 75, 361-391.

11. J. P. Crutchfield, and M. Mitchell, 1995. The evolution
of emergent computation. Proceedings of the National
Academy of Sciences, USA, 82, 10742-10746.

12. R. Das, M. Mitchell, and J. P. Crutchfield, 1994. A
genetic algorithm discovers particle-based computation in
cellular automata. In Y. Davidor, H.-P. Schwefel, and R.
Männer, eds., Parallel Problem Solving from Nature -
PPSN III. Springer-Verlag, 1994.

13. J. R. Koza, F. H. Bennett III, D. Andre, and M. A.
Keane, M. A. Genetic Programming III: Darwinian In-
vention and Problem Solving. San Francisco: Morgan
Kaufmann Publishers, 1999.

14. H. Juillé, and J. B. Pollack. Coevolving the “ideal”
trainer: Application to the discovery of cellular automata
rules. In J. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and
R. L. Riolo, eds., Genetic Programming 1998: Proceed-
ings of the Third Annual Conference. Morgan Kaufmann,
San Francisco, CA, 1998.

plex technological and scientific problems. Also important
and original is the multigenic organisation of GEP chro-
mosomes, which makes GEP a truly hierarchical discov-
ery technique. And finally, GEP algorithms represent na-
ture more faithfully, therefore can be used as computer
models of natural evolutionary processes.

I am very grateful to José Simas for helping with hardware
problems, for reading and commenting the manuscript, and
for his enthusiasm and support while I was grasping the
basic ideas and concepts of GEP.

